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Preface

Like many other people, I find the stock mar-
ket fascinating. The market’s potential for lavish gains and its playful
character, made more attractive with the recent advent of the Internet,
resonates with the gambler in us. Its punishing power and unpredictable
temper make fearful investors look at it sometimes with awe, particu-
larly at times of crashes. Stories of panic and suicides following such
events have become part of market folklore. The richness of the patterns
the stock market displays may lure investors into hoping to “beat the
market” by using or extracting some bits of informative hedge.

However, the stock market is not a “casino” of playful or foolish
gamblers. It is, primarily, the vehicle of fluid exchanges allowing the
efficient function of capitalistic, competitive free markets.

As shown in Figure 0.1 and Table 0.1, the total world market capi-
talization rose from $3.38 trillion (thousand billions) in 1983 to $26.5
trillion in 1998 and to $38.7 trillion in 1999. To put these numbers in
perspective, the 1999 U.S. budget was $1.7 trillion, while its 1983 budget
was $800 billion. The 2002 U.S. budget is projected to be $1.9 trillion.
Market capitalization and trading volumes tripled during the 1990s. The
volume of securities issued was multiplied by 6. Privatization has played
a key role in the stock market growth [51]. Stock market investment is
clearly the biggest game in town.

A market crash occurring simultaneously on most of the stock mar-
kets of the world as witnessed in October 1987 would amount to the
quasi-instantaneous evaporation of trillions of dollars. In values of
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F1G. 0.1. Gross value of the world market capitalization from 1983 to 2000. From
top to bottom, the developing countries are shown as the top strip, other devel-
oped countries (excluding the United States, Japan, and the United Kingdom), the
United Kingdom, Japan, and the United States as the bottom strip. One trillion is
equal by definition to one thousand billion or one million million. Reproduced with
authorization from Boutchkova and Megginson [51].

October 2001, after almost two dismal years for stocks, the total world
market capitalization has shrunk to a mere $25.1 trillion. A stock market
crash of 30% would still correspond to an absolute loss of about $7.5
trillion dollars. Market crashes can thus swallow years of pensions and
savings in an instant. Could they make us suffer even more by being
the precursors or triggering factors of major recessions, as in 1929-33
after the great crash of October 19297 Or could they lead to a general

TaBLE 0.1
The growth of world stock market trading volumes (1983—1998) (value traded in billions
of U.S. dollars)

Countries 1983 1989 1995 1998 1999
Developed countries 1203 6297 9170 20917 35188
United States 797 2016 5109 13148 19993
Japan 231 2801 1232 949 1892
United Kingdom 43 320 510 1167 3399
Developing countries 25 1171 1047 1957 2321
Total world 1228 7468 10216 22874 37509

Note the Japan bubble that culminated at the end of 1990: around this time, the trading volume
on Japanese stock markets topped that of the U.S. market! The bubble started to deflate beginning
in 1990 and has lost more than 60% of its value. Also remarkable is the fact that the market trading
volume of the United States is now more than half the world trading volume, while it was less than
a third of it in 1989.

Reproduced with authorization from Boutchkova and Megginson [51].
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collapse of the financial and banking system, as seems to have been
barely avoided several times in the not-so-distant past?

Stock market crashes are also fascinating because they personify the
class of phenomena known as “extreme events.” Extreme events are
characteristic of many natural and social systems, often refered to by
scientists as “complex systems.”

This book is a story, a scientific tale of how financial crashes can
be understood by invoking the latest and most sophisticated concepts in
modern science, that is, the theory of complex systems and of critical
phenomena. It is written first for the curious and intelligent layperson
as well as for the interested investor who would like to exercise more
control over his or her investments. The book will also be stimulating for
scientists and researchers who are interested in or working on the theory
of complex systems. The task is ambitious. My aim is to cover a territory
that brings us all the way from the description of how the wonderful
organization around us arises to the holy grail of crash predictions. This
is daunting, especially as I have attempted to avoid the technical, if
convenient, language of mathematics.

At one level, stock market crashes provide an excuse for exploring the
wonderful world of self-organizing systems. Market crashes exemplify
in a dramatic way the spontaneous emergence of extreme events in self-
organizing systems. Stock market crashes are indeed perfect vehicles for
important ideas needed to deal and cope with our risky world. Here,
“world” is taken with several meanings, as it can be the physical world,
the natural world, the biological, and even the inner intellectual and
psychological worlds. Uncertainties and variabilities are the key words
to describe the ever-changing environments around us. Stasis and equi-
librium are illusions, whereas dynamics and out-of-equilibrium are the
rule. The quest for balance and constancy will always be unsuccessful.
The message here goes further and proclaims the essential importance of
recognizing the organizing/disorganizing role of extreme events, such as
momentous financial crashes. In addition to the obvious societal impacts,
the guideline underlying this book recognizes that sudden transitions
from a quiescent state to a crisis or catastrophic event provide the most
dramatic fingerprints of the system dynamics. We live on a planet and in
a society with intermittent dynamics rather than at rest (or “equilibrium”
in the jargon of scientists), and so there is a growing and urgent need
to sensitize citizens to the importance and impacts of ruptures in their
multiple forms. Financial crashes provide an exceptionally good example
for introducing these concepts in a way that transcends the disciplinary
community of scholars.



XVi PREFACE

At another level, market crashes constitute beautiful examples of
events that we would all like to forecast. The arrow of time is inexorably
projecting us toward the undetermined future. Predicting the future
captures the imagination of all and is perhaps the greatest challenge.
Prophets have historically terrified or inspired the masses by their visions
of the future. Science has mostly avoided this question by focusing on
another kind of prediction, that of novel phenomena (rather than that
of the future) such as the prediction by Einstein of the existence of
the deviation of light by the sun’s gravitation field. Here, I do not shy
away from this extraordinary challenge, with the aim of showing how a
scientific approach to this question provides remarkable insights.

The book is organized in 10 chapters. The first six chapters provide
the background for understanding why and how large financial crashes
occur.

Chapter 1 introduces the fundamental questions: What are crashes?
How do they happen? Why do they occur? When do they occur?
Chapter 1 outlines the answers I propose, taking as examples some
famous, or shall I say infamous, historical crashes.

Chapter 2 presents the key basic descriptions and properties of stock
markets and of the way prices vary from one instant to the next. This
frames the landscape in which the main characters of my story, the great
crashes, are acting.

Chapter 3 discusses first the limitation of standard analyses for char-
acterizing how crashes are special. It then presents the study of the
frequency distribution of drawdowns, or runs of successive losses, and
shows that large financial crashes are “outliers”: they form a class of
their own that can be seen from their statistical signatures. This rather
academic discussion is justified by the result: If large financial crashes
are “outliers,” they are special and thus require a special explanation, a
specific model, a theory of their own. In addition, their special properties
may perhaps be used for their prediction.

Chapter 4 exposes the main mechanisms leading to positive feed-
backs, that is, self-reinforcement, such as imitative behavior and herding
between investors. Positive feedbacks provide the fuel for the develop-
ment of speculative bubbles, preparing the instability for a major crash.

Chapter 5 presents two versions of a rational model of speculative
bubbles and crashes. The first version posits that the crash hazard drives
the market price. The crash hazard may skyrocket sometimes due to the
collective behavior of “noise traders,” those who act on little information,
even if they think they “know.” The second version inverts the logic and
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posits that prices drive the crash hazard. Prices may skyrocket some-
times, again due to the speculative or imitative behavior of investors.
According to the rational expectation model, this outcome automatically
entails a corresponding increase of the probability for a crash. The most
important message is the discovery of robust and universal signatures
of the approach to crashes. These precursory patterns have been docu-
mented for essentially all crashes on developed as well as emergent stock
markets, on currency markets, on company stocks, and so on.

Chapter 6 takes a step back and presents the general concept of frac-
tals, of self-similarity, and of fractals with complex dimensions and their
associated discrete self-similarity. Chapter 6 shows how these remarkable
geometric and mathematical objects enable one to codify the information
contained in the precursory patterns before large crashes.

The last four chapters document this discovery at great length and
demonstrate how to use this insight and the detailled predictions obtained
for these models to forecast crashes.

Chapter 7 analyzes the major crashes that have occurred on the major
stock markets of the world. It describes the empirical evidence of the uni-
versal nature of the critical log-periodic precursory signature of crashes.

Chapter 8 generalizes this analysis to emergent markets, including six
Latin-American stock market indices (Argentina, Brazil, Chile, Mexico,
Peru, and Venezuela) and six Asian stock market indices (Hong Kong,
Indonesia, Korea, Malaysia, Philippines, and Thailand). It also discusses
the existence of intermittent and strong correlation between markets fol-
lowing major international events.

Chapter 9 explains how to predict crashes as well as other large mar-
ket events and examines in detail forecasting skills and their limitations,
in particular in terms of the horizon of visibility and expected preci-
sion. Several case studies are presented in detail, with a careful count
of successes and failures. Chapter 9 also presents the concept of an
“antibubble,” with the Japanese collapse from the beginning of 1990 to
the present taken as a prominent example. A prediction issued and adver-
tised in January 1999 has been until now borne out with remarkable
precision, correctly predicting several changes of trends, a feat notori-
ously difficult using standard techniques of economic forecasting.

Finally, chapter 10 performs a major leap by extending the analysis to
time scales covering centuries to millenia. It analyzes the whole of U.S.
financial history as well as the world economy and population dynamics
over the last two millenia to demonstrate the existence of strong pos-
itive feedbacks that suggest the existence of an underlying finite-time
singularity around 2050, signaling a fundamental change of regime of
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the world economy and population around 2050 (a super crash?). We are
probably starting to see signatures of this change of regime. I offer three
leading scenarios: collapse, transition to sustainability, and superhumans.

The text is complemented by technical inserts that sometimes use a
little mathematics and can be skipped on first or fast reading. They are
offered as supplements that go deeper into an argument or as useful
additional information. Many figures accompany the text, in keeping with
the proverb that a picture is worth a thousand words.

The story told in this book has an unusual origin. Its roots go all
the way back, starting in the sixties, to the pioneering scientists, such
as Ben Widom (professor at Cornell University), Leo Kadanoff (now
professor at the University of Chicago), Michael Fisher (now professor
at the University of Maryland), Kenneth Wilson (now professor at Ohio
State University and the 1982 Nobel prize winner in physics), and many
others who explored and established the theory of critical phenomena in
natural sciences. I am indebted to Pierre-Gilles de Gennes (College de
France and the 1991 Nobel prize winner in physics) and Bernard Souil-
lard (then a director of research of the Ecole Polytechnique in Palaiseau,
at the French CNRS-National Center of Scientific Research), for a most
stimulating year (1985-86) in Paris as their postdoctoral fellow, where
I started to learn to polish the art of thinking about critical phenomena
and to apply this field to the most complex situations. I also cherish the
remarkable opportunity of broadening my vision of scientific applica-
tions offered by the collaboration with Michel Lagier of Thomson-Sintra
Inc. (now Thomson-Marconi-Sonars, Inc.), which began in 1983 during
my military duty and continues to this day. His unfailing friendship and
kind support over the last two decades have meant a lot to me.

In 1991, while working on the exciting challenge of predicting the
failure of pressure tanks made of Kevlar-matrix and carbon-matrix
composites constituting essential elements of the European Ariane 4
and 5 rockets and also used in satellites for propulsion, I realized that
the rupture of complex material structures could be understood as a
cooperative phenomenon leading to specific detectable critical behav-
iors (see chapters 4 and 5 for the applications of these concepts to
financial crashes). The power laws and associated complex exponents
and log-periodic patterns that I shall discuss in this book, in particular
in chapter 6, were discovered in this context and found to perform
remarkably well. A prediction algorithm has been patented and is now
been used routinely with success in Europe on these pressure tanks
going into space as a standard qualifying procedure. I am indebted to
Jean-Charles Anifrani (now with Eurocopter, Inc.) and Christian Le
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Floc’h of the company Aerospatiale-Matra (now EADS) in Bordeaux,
France (the leader contractor for the European Ariane rocket) for a
stimulating collaboration and for providing this fantastic opportunity.

A few years later, Anders Johansen, Jean-Philippe Bouchaud, and I
realized that financial crashes can be viewed as analogous to “ruptures”
of the market. Anders Johansen and I started to explore systematically
the application of these ideas and methods in this context. What followed
18 described in this book. In this adventure, Johansen, now at the Niels
Bohr Institute in Copenhagen, has played a very special role, as he has
accompanied me first as my student in Nice, France for two years and
then as my postdoc for two years at the University of California, Los
Angeles. A significant portion of this work owes much to him, as he
has implemented a large part of the data analysis of our joint work. I
am very pleased for having shared these exciting times with him, when
we seemed alone against all, trying to document and demonstrate this
discovery. The situation has now evolved, as the subject is attracting an
increasing number of scholars and even more professionals and practi-
tioners, and there is a healthy debate characteristic of a lively subject,
associated in particular with the delicate and touchy question of the pre-
dictability of crashes (more in chapters 9 and 10). I hope that this book
will help in this respect.

I also acknowledge the fruitful and inspiring discussions and collabo-
rations with Jorgen V. Andersen, now jointly at University of Nanterre,
Paris and University of Nice, France, who is now working with me
on an extension of the models of bubbles and crashes described in
chapter 5. I should also mention Olivier Ledoit, then at the Anderson
School of Management at UCLA. The first model of rational bubbles
and crashes described in chapter 5 owes a lot to our discussions and
work together. Other close collaborators, such as Simon Gluzman, Kayo
Ide, and Wei-Xing Zhou at UCLA, are joining in the research with me
on the modeling of financial markets and crashes. I must also single out
for mention Dietrich Stauffer of Cologne University, Germany, who has
played a key role as editor of several international scholarly journals in
helping our iconoclastic papers to be reviewed and published. Witty, con-
cise to the extreme, straightforward, and with a strong sense of humor,
Stauffer has been very supportive and helpful. He has also been an inde-
pendent witness to the prediction on the Japanese Nikkei stock market
described in chapter 9.

I am also grateful to Yueqiang Huang at the University of South-
ern California, Per Jogi and Matt W. Lee at UCLA, Laurent Nottale of
the Observatoire Paris-Meudon, Guy Ouillon at the University of Nice,
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and Hubert Saleur and Charlie Sammis at the University of Southern
California for stimulating interactions and discussions on the theory and
practice of log-periodicity. I am indebted to Vladilen Pisarenko of the
International Institute of Earthquake Prediction Theory and Mathemat-
ical Geophysics in Moscow, who provided much advice and numerous
insights on the science and art of statistical testing. I am grateful to Bill
Megginson at the University of Oklahoma for help in getting access to
data on the world market capitalization. Cars Hommes, at the Center
for Nonlinear Dynamics in Economics and Finance at the University of
Amsterdam, and Neil Johnson at Oxford University, U.K., acted as refer-
ees on a preliminary version of the book. I thank them warmly for their
kind and constructive advice. I thank Jorgen Andersen and Paul O’Brien
for a critical reading of the manuscript. I met Joseph Wisnovsky, the
executive editor of Princeton University Press, at a conference of the
American Geophyical Union in San Francisco in December 2000. From
the start, his enthusiasm and support has been an essential help in crys-
tallizing this project. Wei-Xing Zhou helped a lot in preparing the fractal
spiral picture on the cover, and Beth Gallagher performed a very careful
and much appreciated job in correcting the manuscript.

I gratefully acknowledge the 2000 award from the program of the
James S. McDonnell Foundation entitled “Studying Complex Systems.”
Last but not least, I am grateful for the support of the French National
Center for Scientific Research (CNRS) since 1981, which has ensured
complete freedom for my research in France and abroad. Since 1996,
the Institute of Geophysics and Planetary Physics and the Department of
Earth and Space Sciences at UCLA has provided new scientific oppor-
tunities and collaborations as well as support.

I hope that at least some of the joy, excitement, and wonder I have
enjoyed during this research will be shared by readers.

Didier Sornette
Los Angeles and Nice
December 2001



Why Stock Markets Crash



This page intentionally left blank



CHAPTER 1

FINANCIAL CRASHES: WHAT,
HOW, WHY, AND WHEN?

WHAT ARE CRASHES, AND
WHY DO WE CARE?

Stock market crashes are momentous financial
events that are fascinating to academics and practitioners alike. Accord-
ing to the academic world view that markets are efficient, only the reve-
lation of a dramatic piece of information can cause a crash, yet in reality
even the most thorough post-mortem analyses are typically inconclusive
as to what this piece of information might have been. For traders and
investors, the fear of a crash is a perpetual source of stress, and the onset
of the event itself always ruins the lives of some of them.

Most approaches to explaining crashes search for possible mecha-
nisms or effects that operate at very short time scales (hours, days, or
weeks at most). This book proposes a radically different view: the under-
lying cause of the crash will be found in the preceding months and
years, in the progressively increasing build-up of market cooperativity, or
effective interactions between investors, often translated into accelerating
ascent of the market price (the bubble). According to this “critical” point
of view, the specific manner by which prices collapsed is not the most
important problem: a crash occurs because the market has entered an
unstable phase and any small disturbance or process may have triggered
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the instability. Think of a ruler held up vertically on your finger: this
very unstable position will lead eventually to its collapse, as a result
of a small (or an absence of adequate) motion of your hand or due to
any tiny whiff of air. The collapse is fundamentally due to the unsta-
ble position; the instantaneous cause of the collapse is secondary. In the
same vein, the growth of the sensitivity and the growing instability of
the market close to such a critical point might explain why attempts to
unravel the local origin of the crash have been so diverse. Essentially,
anything would work once the system is ripe. This book explores the
concept that a crash has fundamentally an endogenous, or internal, origin
and that exogenous, or external, shocks only serve as triggering factors.
As a consequence, the origin of crashes is much more subtle than often
thought, as it is constructed progressively by the market as a whole, as
a self-organizing process. In this sense, the true cause of a crash could
be termed a systemic instability.

Systemic instabilities are of great concern to governments, central
banks, and regulatory agencies [103]. The question that often arose in
the 1990s was whether the new, globalized, information technology—
driven economy had advanced to the point of outgrowing the set of rules
dating from the 1950s, in effect creating the need for a new rule set for
the “New Economy.” Those who make this call basically point to the
systemic instabilities since 1997 (or even back to Mexico’s peso crisis
of 1994) as evidence that the old post-World War II rule set is now
antiquated, thus condemning this second great period of globalization
to the same fate as the first. With the global economy appearing so
fragile sometimes, how big a disruption would be needed to throw a
wrench into the world’s financial machinery? One of the leading moral
authorities, the Basle Committee on Banking Supervision, advised [32]
that, “in handling systemic issues, it will be necessary to address, on the
one hand, risks to confidence in the financial system and contagion to
otherwise sound institutions, and, on the other hand, the need to minimise
the distortion to market signals and discipline.”

The dynamics of confidence and of contagion and decision making
based on imperfect information are indeed at the core of the book and
will lead us to examine the following questions. What are the mech-
anisms underlying crashes? Can we forecast crashes? Could we con-
trol them? Or, at least, could we have some influence on them? Do
crashes point to the existence of a fundamental instability in the world
financial structure? What could be changed to modify or suppress these
instabilities?
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THE CRASH OF OCTOBER 1987

From the market opening on October 14, 1987 through the market close
on October 19, major indexes of market valuation in the United States
declined by 30% or more. Furthermore, all major world markets declined
substantially that month, which is itself an exceptional fact that contrasts
with the usual modest correlations of returns across countries and the
fact that stock markets around the world are amazingly diverse in their
organization [30].

In local currency units, the minimum decline was in Austria (—11.4%)
and the maximum was in Hong Kong (—45.8%). Out of 23 major
industrial countries (Autralia, Austria, Belgium, Canada, Denmark,
France, Germany, Hong Kong, Ireland, Italy, Japan, Malaysia, Mexico,
the Netherlands, New Zealand, Norway, Singapore, South Africa, Spain,
Sweden, Switzerland, United Kingdom, United States), 19 had a decline
greater than 20%. Contrary to common belief, the United States was not
the first to decline sharply. Non-Japanese Asian markets began a severe
decline on October 19, 1987, their time, and this decline was echoed
first on a number of European markets, then in North American, and
finally in Japan. However, most of the same markets had experienced
significant but less severe declines in the latter part of the previous week.
With the exception of the United States and Canada, other markets
continued downward through the end of October, and some of these
declines were as large as the great crash on October 19.

A lot of work has been carried out to unravel the origin(s) of the crash,
notably in the properties of trading and the structure of markets; how-
ever, no clear cause has been singled out. It is noteworthy that the strong
market decline during October 1987 followed what for many countries
had been an unprecedented market increase during the first nine months
of the year and even before. In the U.S. market, for instance, stock prices
advanced 31.4% over those nine months. Some commentators have sug-
gested that the real cause of October’s decline was that overinflated
prices generated a speculative bubble during the earlier period.

The main explanations people have come up with are the following.

1. Computer trading. In computer trading, also known as program trad-
ing, computers were programmed to automatically order large stock
trades when certain market trends prevailed, in particular sell orders
after losses. However, during the 1987 U.S. crash, other stock markets
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that did not use program trading also crashed, some with losses even
more severe than the U.S. market.

2. Derivative securities. Index futures and derivative securities have been
claimed to increase the variability, risk, and uncertainty of the U.S.
stock markets. Nevertheless, none of these techniques or practices
existed in previous large, sudden market declines in 1914, 1929, and
1962.

3. Illiquidity. During the crash, the large flow of sell orders could not be
digested by the trading mechanisms of existing financial markets. Many
common stocks in the New York Stock Exchange were not traded until
late in the morning of October 19 because the specialists could not find
enough buyers to purchase the amount of stocks that sellers wanted
to get rid of at certain prices. This insufficient liquidity may have had
a significant effect on the size of the price drop, since investors had
overestimated the amount of liquidity. However, negative news about
the liquidity of stock markets cannot explain why so many people
decided to sell stock at the same time.

4. Trade and budget deficits. The third quarter of 1987 had the largest
U.S. trade deficit since 1960, which together with the budget deficit, led
investors into thinking that these deficits would cause a fall of the U.S.
stocks compared with foreign securities. However, if the large U.S.
budget deficit was the cause, why did stock markets in other countries
crash as well? Presumably, if unexpected changes in the trade deficit
are bad news for one country, they should be good news for its trading
partner.

5. Overvaluation. Many analysts agree that stock prices were over-
valued in September 1987. While the price/earning ratio and
the price/dividend ratio were at historically high levels, similar
price/earning and price/dividends values had been seen for most of the
196072 period over which no crash occurred. Overvaluation does not
seem to trigger crashes every time.

Other cited potential causes involve the auction system itself, the
presence or absence of limits on price movements, regulated margin
requirements, off-market and off-hours trading (continuous auction and
automated quotations), the presence or absence of floor brokers who
conduct trades but are not permitted to invest on their own account,
the extent of trading in the cash market versus the forward market, the
identity of traders (i.e., institutions such as banks or specialized trading
firms), the significance of transaction taxes, and other factors.
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More rigorous and systematic analyses on univariate associations
and multiple regressions of these various factors conclude that it is not
at all clear what caused the crash [30]. The most precise statement,
albeit somewhat self-referencial, is that the most statistically significant
explanatory variable in the October crash can be ascribed to the nor-
mal response of each country’s stock market to a worldwide market
motion. A world market index was thus constructed [30] by equally
weighting the local currency indexes of the 23 major industrial countries
mentioned above and normalized to 100 on September 30. It fell to
73.6 by October 30. The important result is that it was found to be
statistically related to monthly returns in every country during the period
from the beginning of 1981 until the month before the crash, albeit
with a wildly varying magnitude of the responses across countries [30].
This correlation was found to swamp the influence of the institutional
market characteristics. This signals the possible existence of a subtle
but nonetheless influential worldwide cooperativity at times preceding
crashes.

HISTORICAL CRASHES

In the financial world, risk, reward, and catastrophe come in irregular
cycles witnessed by every generation. Greed, hubris, and systemic fluc-
tuations have given us the tulip mania, the South Sea bubble, the land
booms in the 1920s and 1980s, the U.S. stock market and great crash in
1929, and the October 1987 crash, to name just a few of the hundreds
of ready examples [454].

THE TuLiP MANIA

The years of tulip speculation fell within a period of great prosperity
in the republic of the Netherlands. Between 1585 and 1650, Amsterdam
became the chief commercial emporium, the center of the trade of the
northwestern part of Europe, owing to the growing commercial activity in
newly discovered America. The tulip as a cultivated flower was imported
into western Europe from Turkey and it is first mentioned around 1554.
The scarcity of tulips and their beautiful colors made them a must for
members of the upper classes of society (see Figure 1.1).

During the build-up of the tulip market, the participants were not
making money through the actual process of production. Tulips acted
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FiG. 1.1. A variety of tulip (the Viceroy) whose bulb was one of the most expensive
at the time of the tulip mania in Amsterdam, from The Tulip Book of P. Cos, includ-
ing weights and prices from the years of speculative tulip mania (1637); Wageningen
UR Library, Special Collections.
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as the medium of speculation and their price determined the wealth of
participants in the tulip business. It is not clear whether the build-up
attracted new investment or new investment fueled the build-up, or both.
What is known is that as the build-up continued, more and more people
were roped into investing their hard-won earnings. The price of the tulip
lost all correlation to its comparative value with other goods or services.

What we now call the “tulip mania” of the seventeenth century was
the “sure thing” investment during the period from the mid-1500s to
1636. Before its devastating end in 1637, those who bought tulips rarely
lost money. People became too confident that this “sure thing” would
always make them money and, at the period’s peak, the participants
mortgaged their houses and businesses to trade tulips. The craze was
so overwhelming that some tulip bulbs of a rare variety sold for the
equivalent of a few tens of thousands of dollars. Before the crash, any
suggestion that the price of tulips was irrational was dismissed by all the
participants.

The conditions now generally associated with the first period of a
boom were all present: an increasing currency, a new economy with
novel colonial possibilities, and an increasingly prosperous country
together had created the optimistic atmosphere in which booms are said
to grow.

The crisis came unexpectedly. On February 4, 1637, the possibility
of the tulips becoming definitely unsalable was mentioned for the first
time. From then until the end of May 1637, all attempts at coordination
among florists, bulbgrowers, and the Netherlands were met with failure.
Bulbs worth tens of thousands of U.S. dollars (in present value) in early
1637 became valueless a few months later. This remarkable event is often
discussed by present-day commentators, and parallels are drawn with
modern speculation mania. The question is asked, Do the tulip market’s
build-up and its subsequent crash have any relevance for today’s markets?

THE SouTH SEA BUBBLE

The South Sea bubble is the name given to the enthusiatic speculative
fervor that ended in the first great stock market crash in England, in
1720 [454]. The South Sea bubble is a fascinating story of mass hys-
teria, political corruption, and public upheaval. (See Figure 1.2.) It is
really a collection of thousands of stories, tracing the personal fortunes
of countless individuals who rode the wave of stock speculation for a
furious six months in 1720. The “bubble year,” as it is called, actually
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involves several individual bubbles, as all kinds of fraudulent joint-stock
companies sought to take advantage of the mania for speculation. The
following account borrows from “The Bubble Project” [60].

In 1711, the South Sea Company was given a monopoly of all trade to
the South Sea ports. The real prize was the anticipated trade that would
open up with the rich Spanish colonies in South America. In return for
this monopoly, the South Sea Company would assume a portion of the
national debt that England had incurred during the War of the Spanish
Succession. When Britain and Spain officially went to war again in 1718,
the immediate prospects for any benefits from trade to South America

F1G. 1.2. An emblematical print of the South Sea scene (etching and engraving), by
the artist William Hogarth in 1722 (now located at The Charles Deering McCormick
Library of Special Collections, Northwestern University). With this scene, Hogarth
satirizes crowds consumed by political speculation on the verge of the stock market
collapse of 1720. The “merry-go-round” was set in motion by the South Sea Com-
pany, who held a monopoly on trade between South America, the Pacific Islands,
and England. The Company tempted vast numbers of middle-class investors to make
quick money through absurd speculations. The wheel of fortune in the center of
the print is broken, symbolizing the abandonment of values for quick money, while
“Trade” lies starving to death. On the right, the original inscription on the London
Fire Monument—erected in memory of the destruction of the City by the Great Fire
in 1666—has been altered to read: “This monument was erected in memory of the
destruction of the city by the South Sea in 1720.” Reproduced by permission from
McCormick Library of Special Collections, Northwestern University Library.
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were nil. What mattered to speculators, however, were future prospects,
and here it could always be argued that incredible prosperity lay ahead
and would be realized when open hostilities came to an end.

The early 1700s was also a time of international finance. By 1719
the South Sea directors wished, in a sense, to imitate the manipula-
tion of public credit that John Law had achieved in France with the
Mississippi Company, which was given a monopoly of French trade to
North America. Law had connived to drive the price of its stock up, and
the South Sea directors hoped to do the same. In 1719 the South Sea
directors made a proposal to assume the entire public debt of the British
government. On April 12, 1720 this offer was accepted. The company
immediately started to drive the price of the stock up through artifi-
cial means; these largely took the form of new subscriptions combined
with the circulation of pro-trade-with-Spain stories designed to give the
impression that the stock could only go higher. Not only did capital
stay in England, but many Dutch investors bought South Sea stock, thus
increasing the inflationary pressure.

South Sea stock rose steadily from January through the spring. As
every apparent success would soon attract its imitators, all kinds of joint-
stock companies suddenly appeared, hoping to cash in on the speculation
mania. Some of these companies were legitimate, but the bulk were
bogus schemes designed to take advantage of the credulity of the people.
Several of the bubbles, both large and small, had some overseas trade
or “New World” aspect. In addition to the South Sea and Mississippi
ventures, there was a project for improving the Greenland fishery and
another for importing walnut trees from Virginia. Raising capital by sell-
ing stock in these enterprises was apparently easy work. The projects
mentioned so far all have a tangible specificity at least on paper, if not
in practice; others were rather vague on details but big on promise. The
most remarkable was “a company for carrying on an undertaking of
great advantage, but nobody to know what it is.” The prospectus stated
that “the required capital was half a million, in five thousand shares of
100 pounds each, deposit 2 pounds per share. Each subscriber, paying
his [or her] desposit, was entitled to 100 pounds per annum per share.
How this immense profit was to be obtained, [the proposer| did not
condescend to inform [the buyers] at that time” [60]. As T. J. Dunning
[114] wrote:

Capital eschews no profit, or very small profit.... With adequate profit,
capital is very bold. A certain 1 percent will ensure its employment
anywhere; 20 percent certain will produce eagerness; 50 percent, positive
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audacity; 100 percent will make it ready to trample on all human laws;
300 percent and there is not a crime at which it will scruple, nor a risk it
will not run, even to the chance of its owner being hanged.

Next morning, at nine o’clock, this great man opened an office in
Cornhill. Crowds of people beset his door, and when he shut up at three
o’clock, he found that no less than one thousand shares had been sub-
scribed for, and the deposits paid. He was thus, in five hours, the winner
of £2,000. He was philosophical enough to be contented with his ven-
ture, and set off the same evening for the Continent. He was never heard
of again.

Such scams were bad for the speculation business and so, largely
through the pressure of the South Sea directors, the so-called “Bubble
Act” was passed on June 11, 1720 requiring all joint-stock companies
to have a royal charter. For a moment, the confidence of the people was
given an extra boost, and they responded accordingly. South Sea stock
had been at £175 at the end of February, 380 at the end of March, and
around 520 by May 29. It peaked at the end of June at over £1,000
(a psychological barrier in that four-digit number).

With credulity now stretched to the limit and rumors of more and more
people (including the directors themselves) selling off, the bubble then
burst according to a slow but steady deflation (not unlike the 60% drop of
the Japanese Nikkei index after its all-time peak at the end of December
1989). By mid-August, the bankruptcy listings in the London Gazette
reached an all-time high, an indication that many people had bought on
credit or margin. Thousands of fortunes were lost, both large and small.
The directors attempted to pump up more speculation. They failed. The
full collapse came by the end of September, when the stock stood at
£135. The crash remained in the consciousness of the Western world for
the rest of the eighteenth century, not unlike our cultural memory of the
1929 Wall Street Crash.

THE GREAT CRASH OF OCTOBER 1929

The Roaring 20s—a time of growth and prosperity on Wall Street
and Main Street—ended with the Great Crash of October 1929 (for
the most thorough and authoritative account and analysis, see [152]).
(See Figure 1.3.) The Great Depression that followed put 13 million
Americans out of work. Two thousand investment firms went under, and
the American banking industry underwent the biggest structural changes
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FiG. 1.3. The front page of the October 30, 1929 New York Times exclaimed the
massive loss on Wall Street. It worked hard to ease fear among panicked investors—
without success, as history has shown.

of its history, as a new era of government regulation began. Roosevelt’s
New Deal politics would follow.

The October 1929 crash is a vivid illustration of several remark-
able features often associated with crashes. First, stock market crashes
are often unforeseen for most people, especially economists. “In a few
months, I expect to see the stock market much higher than today.”
Those words were pronounced by Irving Fisher, America’s distinguished
and famous economist and professor of economics at Yale University,
14 days before Wall Street crashed on Black Tuesday, October 29, 1929.
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“A severe depression such as 1920-21 is outside the range of prob-
ability. We are not facing a protracted liquidation.” This was the anal-
ysis offered days after the crash by the Harvard Economic Society to
its subscribers. After continuous and erroneous optimistic forecasts, the
society closed its doors in 1932. Thus, the two most renowned eco-
nomic forecasting institutes in America at the time failed to predict that
crash and depression were forthcoming and continued with their opti-
mistic views, even as the Great Depression took hold of America. The
reason is simple: the prediction of trend-reversals constitutes by far the
most difficult challenge posed to forecasters and is very unreliable, espe-
cially within the linear framework of standard (auto-regressive) economic
models.

A second general feature exemplified by the October 1929 event is that
a financial collapse has never happened when things look bad. On the
contrary, macroeconomic flows look good before crashes. Before every
collapse, economists say the economy is in the best of all worlds. Every-
thing looks rosy, stock markets go up and up, and macroeconomic flows
(output, employment, etc.) appear to be improving further and further.
This explains why a crash catches most people, especially economists,
totally by surprise. The good times are invariably extrapolated linearly
into the future. Is it not perceived as senseless by most people in a time
of general euphoria to talk about crash and depression?

During the build-up phase of a bubble such as the one preceding the
October 1929 crash, there is a growing interest in the public for the com-
modity in question, whether it consists of stocks, diamonds, or coins.
That interest can be estimated through different indicators: an increase in
the number of books published on the topic (see Figure 1.4) and in the
subscriptions to specialized journals. Moreover, the well-known empir-
ical rule according to which the volume of sales is growing during a
bull market, as shown in Figure 1.5, finds a natural interpretation: sales
increases in fact reveal and pinpoint the progress of the bubble’s diffu-
sion throughout society. These features have been recently reexamined
for evidence of a bubble, a “fad” or “herding” behavior, by studying
individual stock returns [455]. One story often advanced for the boom
of 1928 and 1929 is that it was driven by the entry into the market of
largely uninformed investors, who followed the fortunes of and invested
in “favorite” stocks. The result of this behavior would be a tendency for
the favorite stocks’ prices to move together more than would be pre-
dicted by their shared fundamental economic values. The co-movement
indeed increased significantly during the boom and was a signal charac-
teristic of the tumultuous market of the early 1930s. These results are
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F1G. 1.4. Comparison between the number of yearly published books about stock
market speculation and the level of stock prices (1911-1940). Solid line: Books at
Harvard’s library whose titles contain one of the words “stocks,” “stock market,” or
“speculation”. Broken line: Standard and Poor’s index of common stocks. The curve
of published books lags behind the price curve with a time-lag of about 1.5 years,
which can be explained by the time needed for a book to get published. Source:
The stock price index is taken from the Historical Abstract of the United States.
Reproduced from [349].

thus consistent with the possibility that a fad or crowd psychology played
a role in the rise of the market, its crash, and subsequent volatility [455].

The political mood before the October 1929 crash was also optimistic.
In November 1928, Herbert Hoover was elected president of the United
States in a landslide, and his election set off the greatest increase in
stock buying to that date. Less than a year after the election, Wall Street
crashed.

EXTREME EVENTS IN COMPLEX SYSTEMS

Financial markets are not the only systems with extreme events. Financial
markets constitute one among many other systems exhibiting a complex
organization and dynamics with similar behavior. Systems with a large
number of mutually interacting parts, often open to their environment,
self-organize their internal structure and their dynamics with novel and
sometimes surprising macroscopic (“emergent”) properties. The complex
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F1G. 1.5. Comparison between the number of shares traded on the NYSE and the
level of stock prices (1897-1940). Solid line: Number of shares traded. Broken line:
Deflated Standard and Poor’s index of common stocks. Source: Historical Statistics
of the United States. Reproduced from [349].

system approach, which involves “seeing” interconnections and relation-
ships, that is, the whole picture as well as the component parts, is nowa-
days pervasive in modern control of engineering devices and business
management. It also plays an increasing role in most of the scientific
disciplines, including biology (biological networks, ecology, evolution,
origin of life, immunology, neurobiology, molecular biology, etc.), geol-
ogy (plate-tectonics, earthquakes and volcanoes, erosion and landscapes,
climate and weather, environment, etc.), and the economic and social
sciences (cognition, distributed learning, interacting agents, etc.). There
is a growing recognition that progress in most of these disciplines, in
many of the pressing issues for our future welfare as well as for the
management of our everyday life, will need such a systemic complex
system and multidisciplinary approach. This view tends to replace the
previous “analytical” approach, consisting of decomposing a system in
components, such that the detailed understanding of each component was
believed to bring understanding of the functioning of the whole.

A central property of a complex system is the possible occurrence
of coherent large-scale collective behaviors with a very rich structure,
resulting from the repeated nonlinear interactions among its constituents:
the whole turns out to be much more than the sum of its parts. It is
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widely believed that most complex systems are not amenable to math-
ematical, analytic descriptions and can be explored only by means of
“numerical experiments.” In the context of the mathematics of algorith-
mic complexity [73], many complex systems are said to be computa-
tionally irreducible; that is, the only way to decide about their evolution
is to actually let them evolve in time. Accordingly, the “dynamical”
future time evolution of complex systems would be inherently unpre-
dictable. This unpredictability does not, however, prevent the application
of the scientific method to the prediction of novel phenomena as exem-
plified by many famous cases (the prediction of the planet Neptune by
Leverrier from calculations of perturbations in the orbit of Uranus, the
prediction by Einstein of the deviation of light by the sun’s gravitation
field, the prediction of the helical structure of the DNA molecule by
Watson and Crick based on earlier predictions by Pauling and Bragg,
etc.). In contrast, it refers to the impossibility of satisfying the quest
for the knowledge of what tomorrow will be made of, often filled by
the vision of “prophets” who have historically inspired or terrified the
masses.

The view that complex systems are unpredictable has recently been
defended persuasively in concrete prediction applications, such as the
socially important issue of earthquake prediction (see the contributions
in [312]). In addition to the persistent failures at reaching a reliable
earthquake predictive scheme, this view is rooted theoretically in the
analogy between earthquakes and self-organized criticality [26]. In this
“fractal” framework (see chapter 6), there is no characteristic scale, and
the power-law distribution of earthquake sizes reflects the fact that the
large earthquakes are nothing but small earthquakes that did not stop.
They are thus unpredictable because their nucleation is not different from
that of the multitude of small earthquakes, which obviously cannot all
be predicted.

Does this really hold for all features of complex systems? Take our
personal life. We are not really interested in knowing in advance at what
time we will go to a given store or drive to a highway. We are much more
interested in forecasting the major bifurcations ahead of us, involving
the few important things, like health, love, and work, that count for
our happiness. Similarly, predicting the detailed evolution of complex
systems has no real value, and the fact that we are taught that it is
out of reach from a fundamental point of view does not exclude the
more interesting possibility of predicting phases of evolutions of complex
systems that really count, like the extreme events.
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It turns out that most complex systems in natural and social sciences
do exhibit rare and sudden transitions that occur over time intervals that
are short compared to the characteristic time scales of their posterior evo-
lution. Such extreme events express more than anything else the under-
lying “forces” usually hidden by almost perfect balance and thus provide
the potential for a better scientific understanding of complex systems.

These crises have fundamental societal impacts and range from large
natural catastrophes, such as earthquakes, volcanic eruptions, hurricanes
and tornadoes, landslides, avalanches, lightning strikes, meteorite/asteroid
impacts (see Figure 1.6), and catastrophic events of environmental degra-
dation, to the failure of engineering structures, crashes in the stock
market, social unrest leading to large-scale strikes and upheaval, eco-
nomic drawdowns on national and global scales, regional power black-
outs, traffic gridlock, and diseases and epidemics. It is essential to realize

F1G. 1.6. One of the most fearsome possible catastrophic events, but one with very
low probability of occurring. A collision with a meteorite with a diameter of 15 km
with impact velocity of 14 km/s (releasing about the same energy, equal to 100
Megatons of equivalent TNT, as what is thought to be the dinosaur killer) occurs
roughly once every 100 million years. A collision with a meteorite with a diameter
of the order of 1,000 km as shown in this figure occurred only early in the solar
system’s history. (Creation of the space artist Don Davis.)
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that the long-term behavior of these complex systems is often controlled
in large part by these rare catastrophic events: the universe was probably
born during an extreme explosion (the “big bang”); the nucleosynthesis
of all important heavy atomic elements constituting our matter results
from the colossal explosion of supernovae (stars more heavy than our
sun whose internal nuclear combustion diverges at the end of their life);
the largest earthquake in California, repeating about once every two cen-
turies, accounts for a significant fraction of the total tectonic deforma-
tion; landscapes are more shaped by the “millenium” flood that moves
large boulders than by the action of all other eroding agents; the largest
volcanic eruptions lead to major topographic changes as well as severe
climatic disruptions; according to some contemporary views, evolution is
probably characterized by phases of quasi-stasis interrupted by episodic
bursts of activity and destruction [168, 169]; financial crashes, which can
destroy in an instant trillions of dollars, loom over and shape the psy-
chological state of investors; political crises and revolutions shape the
long-term geopolitical landscape; even our personal life is shaped in the
long run by a few key decisions or happenings.

The outstanding scientific question is thus how such large-scale pat-
terns of catastrophic nature might evolve from a series of interactions
on the smallest and increasingly larger scales. In complex systems, it
has been found that the organization of spatial and temporal correlations
do not stem, in general, from a nucleation phase diffusing across the
system. It results rather from a progressive and more global cooperative
process occurring over the whole system by repetitive interactions. For
instance, scientific and technical discoveries are often quasi-simultaneous
in several laboratories in different parts of the world, signaling the global
nature of the maturing process.

Standard models and simulations of scenarios of extreme events are
subject to numerous sources of error, each of which may have a negative
impact on the validity of the predictions [232]. Some of the uncertainties
are under control in the modeling process; they usually involve trade-offs
between a more faithful description and manageable calculations. Other
sources of error are beyond control, as they are inherent in the modeling
methodology of the specific disciplines. The two known strategies for
modeling are both limited in this respect: analytical theoretical predic-
tions are out of reach for most complex problems. Brute force numerical
resolution of the equations (when they are known) or of scenarios is reli-
able in the “center of the distribution,” that is, in the regime far from the
extremes where good statistics can be accumulated. Crises are extreme
events that occur rarely, albeit with extraordinary impact, and are thus
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completely undersampled and poorly constrained. Even the introduction
of “teraflop” supercomputers does not qualitatively change this funda-
mental limitation.

Notwithstanding these limitations, I believe that the progress of sci-
ence and of its multidisciplinary enterprises makes the time ripe for
a full-fledged effort toward the prediction of complex systems. In par-
ticular, novel approaches are possible for modeling and predicting cer-
tain catastrophic events or “ruptures,’ that is, sudden transitions from
a quiescent state to a crisis or catastrophic event [393]. Such ruptures
involve interactions between structures at many different scales. In the
present book, I apply these ideas to one of the most dramatic events
in social sciences, financial crashes. The approach described in this
book combines ideas and tools from mathematics, physics, engineering,
and the social sciences to identify and classify possible universal struc-
tures that occur at different scales and to develop application-specific
methodologies for using these structures for the prediction of the financial
“crises.” Of special interest will be the study of the premonitory processes
before financial crashes or “bubble” corrections in the stock market.

For this purpose, I shall describe a new set of computational meth-
ods that are capable of searching and comparing patterns, simultane-
ously and iteratively, at multiple scales in hierarchical systems. I shall
use these patterns to improve the understanding of the dynamical state
before and after a financial crash and to enhance the statistical model-
ing of social hierarchical systems with the goal of developing reliable
forecasting skills for these large-scale financial crashes.

IS PREDICTION POSSIBLE? A WORKING HYPOTHESIS

With the low of 3227 on April 17, 2000, identified as the end of the
“crash,” the Nasdaq Composite index lost in five weeks over 37% of
its all-time high of 5133 reached on March 10, 2000. This crash has
not been followed by a recovery, as occurred from the October 1987
crash. At the time of writing, the Nasdaq Composite index bottomed at
1395.8 on September 21, 2001, in a succession of descending waves.
The Nasdaq Composite consists mainly of stock related to the so-called
“New Economy,” that is, the Internet, software, computer hardware,
telecommunications, and similar sectors. A main characteristic of these
companies is that their price—earning ratios (P/Es), and even more so
their price—dividend ratios, often come in three digits. Some, such as
VA LINUX, actually have a negative earning/share (of —1.68). Yet they
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are traded at around $40 per share, which is close to the price of a
share of Ford in early March 2000. In constrast, so-called “Old Econ-
omy” companies, such as Ford, General Motors, and DaimlerChrysler,
have P/E &~ 10. The difference between Old Economy and New Econ-
omy stocks is thus the expectation of future earnings as discussed in
[282] (see also [395] for a new view on speculative pricing): investors
expect an enormous increase in, for example, the sale of Internet and
computer-related products rather than of cars and are hence more willing
to invest in Cisco rather than in Ford, notwithstanding the fact that the
earning per share of the former is much smaller than for the latter. For a
similar price per share (approximately $60 for Cisco and $55 for Ford),
the earning per share in 1999 was $0.37 for Cisco compared with $6.00
for Ford. Close to its apex on April 14, 2000, Cisco had a total market
capitalization of $395 billion compared with $63 billion for Ford. Cisco
has since bottomed at about $11 in September 2001 and traded at around
$20 at the end of 2001.

In the standard fundamental valuation formula, in which the expected
return of a company is the sum of the dividend return and of the growth
rate, New Economy companies are supposed to compensate for their
lack of present earnings by a fantastic potential growth. In essence, this
means that the bull market observed in the Nasdaq in 1997-2000 is
fueled by expectations of increasing future earnings rather than economic
fundamentals: the price-to-dividend ratio for a company such as Lucent
Technologies (LU) with a capitalization of over $300 billion prior to its
crash on January 5, 2000 (see Figure 1.7) is over 900, which means
that you get a higher return on your checking account (!) unless the
price of the stock increases. In constrast, an Old Economy company such
as DaimlerChrysler gives a return that is more than 30 times higher.
Nevertheless, the shares of Lucent Technologies rose by more than 40%
during 1999, whereas the share of DaimlerChrysler declined by more
than 40% in the same period. Recent crashes of IBM, LU, and Procter &
Gamble (P&G), shown in Figures 1.7-1.9 correspond to a loss equivalent
to the national budget of many countries! And this is usually attributed to
a “business-as-usual” corporate statement of a slightly revised smaller-
than-expected earnings!

These considerations suggest that the expectation of future earnings
(and its perception by others), rather than present economic reality, is an
important motivation for the average investor. The inflated price may be
a speculative bubble if the growth expectations are unrealistic (which is,
of course, easy to tell in hindsight but not obvious at all in the heat of
the action!). As already alluded to, history provides many examples of
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FiG. 1.7. Top panel: Time series of daily closes and volume of the IBM stock over
a one-year period around the large drop of October 21, 1999. The time of the crash
can be seen clearly as coinciding with the peak in volume (bottom panel). Taken
from http://finance.yahoo.com/.

bubbles driven by unrealistic expectations of future earnings followed by
crashes [454]. The same basic ingredients are found repeatedly: fueled
by initially well-founded economic fundamentals, investors develop a
self-fulfilling enthusiasm from an imitative process or crowd behavior
that leads to the building of “castles in the air,” to paraphrase Burton
Malkiel [282]. Furthermore, the causes of the crashes on the U.S. markets
in October 1929, October 1987, August 1998, and April 2000 belong
to the same category, the difference being mainly in which sector the
bubble was created. In 1929, it was utilities; in 1987, the bubble was
supported by a general deregulation of the market, with many new pri-
vate investors entering the market with very high expectations about the
profit they would make; in 1998, it was an enormous expectation for
the investment opportunities in Russia that collapsed; until early 2000,
it was the extremely high expectations for the Internet, telecommuni-
cations, and similar sectors that fueled the bubble. The IPOs (initial
public offerings) of many Internet and software companies have been fol-
lowed by a mad frenzy, where the share price has soared during the first
few hours of trading. An excellent example is VA LINUX SYSTEMS
whose $30 TPO price increased a record 697% to close at $239.25 on its
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FiGc. 1.8. Top panel: Time series of daily closes and volume of the Lucent Tech-
nology stock over a one-year period around the large drop of January 6, 2000. The
time of the crash can be seen clearly as coinciding with the peak in volume (bottom
panel). Taken from http://finance.yahoo.com/.

opening day December 9, 1999, only to decline to $28.94 on April 14,
2000.

Building on these insights, our hypothesis is that stock market crashes
are caused by the slow build-up of long-range correlations leading to
a global cooperative behavior of the market and eventually ending in a
collapse in a short, critical time interval. The use of the word “critical”
is not purely literary here: in mathematical terms, complex dynamical
systems can go through so-called critical points, defined as the explosion
to infinity of a normally well-behaved quantity. As a matter of fact, as
far as nonlinear dynamical systems go, the existence of critical points is
more the rule than the exception. Given the puzzling and violent nature
of stock market crashes, it is worth investigating whether there could
possibly be a link between stock market crashes and critical points.

e Our key assumption is that a crash may be caused by local self-
reinforcing imitation between traders. This self-reinforcing imitation
process leads to the blossoming of a bubble. If the tendency for traders
to “imitate” their “friends” increases up to a certain point called the
“critical” point, many traders may place the same order (sell) at the
same time, thus causing a crash. The interplay between the progressive
strengthening of imitation and the ubiquity of noise requires a proba-
bilistic description: a crash is not a certain outcome of the bubble but
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F1G. 1.9. Top panel: Time series of daily closes and volume of the Procter & Gam-
ble stock over a one-year period ending after the large drop of March 7, 2000. The
time of the crash can be seen clearly as coinciding with the peak in volume (bottom
panel). Taken from http://finance.yahoo.com/.

can be characterized by its hazard rate, that is, the probability per unit
time that the crash will happen in the next instant, provided it has not
happened yet.

e Since the crash is not a certain deterministic outcome of the bubble,
it remains rational for investors to remain in the market provided they
are compensated by a higher rate of growth of the bubble for taking
the risk of a crash, because there is a finite probability of “landing
smoothly,” that is, of attaining the end of the bubble without crash.

In a series of research articles performed in collaboration with several
colleagues and mainly with Anders Johansen, we have shown extensive
evidence that the build-up of bubbles manifests itself as an overall super-
exponential power-law acceleration in the price decorated by log-periodic
precursors, a concept related to fractals, as will become clear later (see
chapter 6). In telling this story, this book will address the following
questions: Why and how do these precursors occur? What do they mean?
What do they imply with respect to prediction?

My colleagues and I claim that there is a degree of predictive skill
associated with these patterns, which has already been used in practice
and has been investigated by us as well as many others, academics and,
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most-of-all, practitioners. The evidence I discuss in what follows arises
from many crashes, including

o the October 1929 Wall Street crash, the October 1987 World crash, the
October 1987 Hong Kong crash, the August 1998 World crash, and
the April 2000 Nasdaq crash;

o the 1985 foreign exchange event on the U.S. dollar and the correction
of the U.S. dollar against the Canadian dollar and the Japanese Yen
starting in August 1998;

o the bubble on the Russian market and its ensuing collapse in 1997-98;

e 22 significant bubbles followed by large crashes or by severe cor-
rections in the Argentinian, Brazilian, Chilean, Mexican, Peruvian,
Venezuelan, Hong-Kong, Indonesian, Korean, Malaysian, Philippine,
and Thai stock markets.

In all these cases, it has been found that, with very few exceptions,
log-periodic power-laws adequately describe speculative bubbles on the
Western markets as well as on the emerging markets.

Notwithstanding the drastic differences in epochs and contexts, I shall
show that these financial crashes share a common underlying background
as well as structure. The rationale for this rather surprising result is
probably rooted in the fact that humans are endowed with basically the
same emotional and rational qualities in the twenty-first century as they
were in the seventeenth century (or at any other epoch). Humans are
still essentially driven by at least a modicum of greed and fear in their
quest for well-being. The “universal” structures I am going to uncover
in this book may be understood as the robust emergent properties of the
market resulting from some characteristic “rules” of interaction between
investors. These interactions can change in details due, for instance, to
computers and electronic communications. They have not changed at a
qualitative level. As we shall see, complex system theory allows us to
account for this robustness.



CHAPTER 2

FUNDAMENTALS OF
FINANCIAL MARKETS

Notwithstanding the drama surrounding crashes,
there is a growing body of scholarly work suggesting that they are part
of the family of usual daily price variations; this view, which is rooted
theoretically in some branches of the theory of complex systems, posits
that there is no characteristic scale in stock market price fluctuations
[287]. As a consequence, the very large price drops (crashes) are nothing
but small drops that did not stop [26]. According to this view, since
crashes belong to the same family as the rest of the returns we observe
on normal days, they should be inherently unpredictable because their
nucleation is not different from that of the multitude of small losses
which obviously cannot be predicted at all.

In chapter 3, we examine in detail whether this really holds for the
very largest crashes. In particular, we shall provide strong evidence that
large crashes are in fact in a league of their own: they are “outliers.”
This realization will call for new explanations and hence may suggest a
possibility of predictability. In order to reach this surprising conclusion,
we first need to recall some basic facts about the distribution (also called
the frequency) of price variations or of price returns and their respec-
tive correlation. To this end, we first present the standard view about
price variations and returns on the stock market. A simple toy model
will illustrate why arbitrage opportunities (the possibility to get a “free
lunch”) are usually washed out by the intelligent investment of informed
traders, leading to the concept of the efficient stock market. We shall
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then test this concept in the next chapter, by studying the distribution of
drawdowns, that is, runs of losses over several days, demonstrating that
the largest drawdowns, the crashes (fast or slow), belong to a class of
their own.

THE BASICS
PRICE TRAJECTORIES

Stock market prices show changes at all time scales. From the time
scale of “ticks” to that of centuries, prices embroider their complex tra-
jectories. A tick is the price increment from the last to the next trade,
separated typically by a few seconds or less for major stocks in active
markets. The minimum tick is the smallest increment for which stock
prices can be quoted. Figure 2.1 shows monthly quotes of the Dow Jones
Industrial Average (DJIA) from 1790 to 2000. The great crash of Octo-
ber 1929 followed by the great depression is the most striking pattern
in this figure. In contrast, on this long time scale the crash of October
1987 is barely visible as a small glitch between the two vertical lines.

What is the Dow Jones Industrial Average? The DJIA is an index of
30 “blue-chip” U.S. stocks. It is the oldest continuing U.S. market index.
It is called an “average” because it was originally computed by adding up
stock prices and dividing by the number of stocks (the very first average
price of industrial stocks, on May 26, 1896, was 40.94) and should
ideally represent a correct measure of the state of the economy. The
methodology remains the same today, but the divisor has been changed
to preserve historical continuity. The editors of The Wall Street Journal
select the components of the industrial average by taking a broad view
of what “industrial” means. The most recent changes in the components
of the DJIA occurred Monday, November 1, 1999, when Home Depot
Inc., Intel Corp., Microsoft Corp., and SBC Communications replaced
Union Carbide Corp. (in the DJIA since 1928), Goodyear Tire & Rubber
Co. (in the DJIA since 1930), Sears, Roebuck & Co. (in the DJIA since
1924), and Chevron (in the DJIA since 1984). The previous change
occurred in March 7, 1997, when Hewlett-Packard, Johnson & John-
son, Traveller’s Group (Now Citigroup), and Wal-Mart Stores replaced
Woolworth, Westinghouse Electric, Texaco and Bethlehem Steel. The
components of the Dow Jones Averages are daily listed on page C3
of the Money and Investing section in The Wall Street Journal. See
http://averages.DowJones.com/about.html. The Dow Jones index shown
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Dow Jones Industrial Average Jan 1790-Sept 2000
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F1G. 2.1. Monthly quotes of the DJIA from September 2000 extrapolated back to
January 1790. The vertical axis uses logarithmic scales such that multiplication
by a fixed factor, for instance 10, corresponds to addition of a constant in this
representation. Mathematically, this corresponds to a mapping from multiplication
to addition and allows us to show on the same graph prices that have changed by
factors of thousands (in the present case, from a value of about 3 in 1790 to a
value above 10,000 in 2000). The thick (respectively, thin) straight line corresponds
to the exponential growth of an initial wealth of $1 in 1780 (respectively, 1880)
invested at the annual rate of return of ~2.9% (respectively, 6.8%), which would
have transformed into $1,000 (respectively, $10,000) in 2020.

in figure 2.1 is the true Dow Jones index back to 1896 extrapolated back
to 1790 by The Foundation for the Study of Cycles [138].

The thick straight line in Figure 2.1 corresponds to the exponential
growth of an initial wealth of $1 invested in 1780 at the annual rate of
return of ~2.9%, which will grow to $1,000 in 2020. The thin straight
line corresponds to the exponential growth of an initial wealth of $1
invested in 1880 at the annual rate of return of 6.8%, which will grow
to $10,000 in 2020. They both show the power of compounded interest!
The comparison of these two lines is suggestive of an acceleration of the
growth rate of return of the DJIA, which was on average about 3% per
year 1780 until the 1930s and then shifted to an average of about 7%
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per year. But even this description falls short of capturing adequately the
behavior of the DJIA: the growth of the DJIA is even stronger than given
by the thin straight line and seems to accelerate progressively upward (at
the end of the book, chapter 10 will offer insights one can extract from
this observation).

Figure 2.2 shows the daily close quotes of the DJIA from January 2,
1980 until December 31, 1987. This time period corresponds to a magni-
fication of the interval bracketed by the two vertical lines in Figure 2.1.
While Figure 2.2 shows only eight years of data compared to the 210
years of data of figure 2.1, the two figures are strikingly similar. Some
caution must be exercised, however, as the scales used in the two figures
are different (logarithmic scale for the ordinate of Figure 2.1 vs. lin-
ear scale for Figure 2.2). We shall perform a detailed comparison in
chapters 7 and 10 of the information provided by these two kinds of
plots.

Dow Jones Industrial Average 2 Jan 1980-31 Dec 1987
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Fi1G. 2.2. Daily quotes of the Dow Jones Industrial Average from January 2, 1980
until December 31, 1987. This time period corresponds to a magnification of the
interval bracketed by the two vertical lines in Figure 2.1.
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RETURN TRAJECTORIES

Figures 2.3, 2.4, and 2.5 show three time series of returns, rather than the
prices themselves, at three very different time scales: the time scale of
minutes over a full day of trading, the time scale of days over eight years
of trading, and the time scale of months over more than two centuries
of trading. For comparison, Figure 2.6 is obtained by randomly tossing
coins, that is, by choosing at random a positive or negative return with
a probability given by the Gaussian bell curve with an average return
amplitude (standard deviation) equal to 1%. Real returns exhibit much
larger variability and clustering of variability compared to the artificial
time series.

What are returns? If your wealth is 100 today, with an interest rate of 5%
per year, it will transform into 105 after one year, since (105 — 100)/100 =
5%. The one-year return is then equal to (105 — 100)/100 = 5%; that
is, it is equal to the interest rate. More generally, the return derived
from an asset whose price changed from p(¢) at time ¢ to p(t+ dt)

June, 20th, 1995
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F1G. 2.3. Minute by minute returns of the S&P 500 index on June 20, 1995 showing
the highly stochastic nature of the price dynamics. The typical amplitude of the
return fluctuations is large at the beginning of the day, when traders place orders and
discover the price dynamics (mood?) of the day. The fluctuations go through a low
around noon and then increase again at the end of the day, when trading increases
due to the action of strategies trading at the close.



FUNDAMENTALS OF FINANCIAL MARKETS 31

Dow Jones Index Returns Jan.2nd 1980-Dec.31st 1987
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FIG. 2.4. Daily returns of the DJIA from January 2, 1980 until December 31, 1987.
The running sum of these series gives approximately the price trajectory shown
in Figure 2.2. Notice the large returns, both positive and negative, associated with
the crash of October 1987. The largest negative daily return (the crash) reached
—22.6% on October 19, 1987. The largest positive return (the rebound after the
crash) reached 4+9.7% on October 21, 1987. Both are completely off-scale.

at time r + dt is (p(¢t 4+ dr) — p(¢))/p(¢r). Continuously compound-
ing interest rates amounts to replacing (p(¢ + dt) — p(t))/p(t) by the
so-called logarithmic return In[p(z + dt)/p(t)]. In the previous exam-
ple, (p(t +dt) — p(t))/p(t) = 5%, compared to In[p(t + dt)/p(t)] =
In(105/100) = 4.88%. Notice that the two ways of calculating the return
give approximately the same results (5% compared to 4.88%) but not
exactly the same result: the logarithmic return is smaller since you need a
smaller return to obtain the same total capital at the end of the investment
period, if the generated interest is continuously reinvested rather than, say,
reinvested annually. Indeed, the interest itself generates interest, which
generates interest, and so forth.

It is striking how both randomness and patterns seem to coexist in
these time series. Figures 2.3, 2.4, and 2.5 show the pervasive variability
of prices at all time scales. These variations are the “pulsations” of the
stock market, the result of investors’ actions. They are fascinating with
their spontaneous motion and they give an appearance of life, akin to
the complexity of the world around us. They condition the future return
of our investment. The price trajectories seen in Figures 2.1 and 2.2 as
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Dow Jones Index Jan. 1790-Sept. 2000
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F1G. 2.5. Monthly returns of the DJIA from January 1790 until September 2000.
The running sum of these series gives approximately the price trajectory shown in
Figure 2.1. Notice the large returns, both positive and negative, associated with the
crashes of October 1929 and of October 1987.
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F1G. 2.6. Gaussian white noise time series with a standard deviation of 1% con-
structed using a random number generator. The running sum of these numbers define
a random walk as defined in the text (see Figure 2.9).
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well as the returns shown in Figures 2.3, 2.4, and 2.5 have both an aes-
thetic and an almost mystical appeal, with their delicate balance between
randomness and apparent order. The many kinds of structures observed
on stock price trajectories, such as trends, cycles, booms, and bursts,
have been the object of extensive analysis by the scientists of the social
and financial fields as well as by professional analysts and traders. The
work of the latter category of analysts has led to a fantastic lexicon of
these patterns with colorful names, such as “head and shoulder,” “double-
bottom,” “hanging-man lines,” “the morning star,” “Elliott waves,” and
so on (see, for instance, [316]).

Investments in the stock market are based on a quite straightforward
rule: if you expect the market to go up in the future, you should buy
(this is referred to as being “long” in the market) and hold the stock
until you expect the trend to change direction; if you expect the market
to go down, you should stay out of it, sell if you can (this is referred to
as being “short” of the market) by borrowing a stock and giving it back
later by buying it at a smaller price in the future. It is difficult, to say
the least, to predict future directions of stock market prices even if we
are considering time scales of the order of decades, for which one could
hope for a negligible influence of “noise.” To illustrate this, even the
widely cited “fact” that in the United States there has been no thirty-year
period over which stocks underperformed bonds turns out to be incorrect
for the period from 1831 to 1861 [378]. If one chooses ten- or twenty-
years periods, the conclusions are much more murky and the evidence
that stocks always outperform bonds over long time intervals does not
exist [375]. The point in comparing stocks and bonds is that bonds are
so-called fixed-income and ensure the capital (in denominated currency
but not in real value if there is inflation) as well as a fixed return. Bonds
thus provide a kind of anchor or benchmark against which to compare
the highly volatile stocks.

RETURN DISTRIBUTIONS AND RETURN CORRELATION

To decide whether to buy or sell, it seems useful to try to understand
the origin of the price changes, whether prices will go up or down, and
when; more generally, what are the properties of price changes that can
help us guess the future? Two characteristics among many have attracted
attention: the distribution of price variations (or of price returns) and the
correlation between successive price variations (or returns).
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Fi1G. 2.7. Distribution of daily returns for the DJIA and the Nasdaq index for the
period January 2, 1990 until September 29, 2000. The distributions shown here give,
by definition, the number of times a return larger than or equal to a chosen value
on the abscissa has been observed from January 2, 1990 till 29 September 2000.
The distributions are thus a measure of relative frequency of the different observed
returns. The lines corresponds to fits of the data by models discussed in the text.

Figure 2.7 shows the distribution of daily returns of the DJIA and of
the Nasdaq index for the period January 2, 1990 until September 29,
2000. The ordinate gives the number of times a given return larger than
a value read on the abscissa has been observed. For instance, we read on
Figure 2.7 that five negative and five positive daily DJIA market returns
larger than or equal to 4% have occurred. In comparison, fifteen negative
and twenty positive returns larger than or equal to 4% have occurred
for the Nasdaq index. The larger fluctuations of returns of the Nasdaq
compared to the DJIA are also quantified by the so-called volatility,
equal to 1.6% (respectively, 1.4%) for positive (respectively, negative)
returns of the DJIA, and equal to 2.5% (respectively, 2.0%) for positive
(respectively, negative) returns of the Nasdaq index. The lines shown in
Figure 2.7 correspond to representing the data by a so-called exponential.
The upward convexity of the trajectories defined by the symbols for the
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Nasdaq qualifies a so-called stretched exponential model [253], which
embodies the fact that the tail of the distribution is “fatter’’; that is, there
are larger risks of large drops (as well as ups) in the Nasdaq compared
to the DJIA.

What is the Nasdaq composite index? In 1961, in an effort to improve
overall regulation of the securities industry, The Congress of the United
States asked the U.S. Securities and Exchange Commission (SEC) to
conduct a special study of all securities markets. In 1963, the SEC
released the completed study, in which it characterized the over-the-
counter (OTC) securities market as fragmented and obscure. The SEC
proposed a solution—automation—and charged The National Association
of Securities Dealers, Inc. (NASD) with its implementation. In 1968,
construction began on the automated OTC securities system, then known
as the National Association of Securities Dealers Automated Quotation,
or “NASDAQ” System. In 1971, Nasdaq celebrated its first official trading
day on February 8. This was the first day of operation for the completed
NASDAQ automated system, which displayed median quotes for more
than 2,500 OTC securities. In 1990, Nasdaq formally changed its name to
the Nasdaq Stock Market. In 1994, the Nasdaq Stock Market surpassed
the New York Stock Exchange in annual share volume. In 1998, the
merger between the NASD and the AMEX created The Nasdag-AMEX
Market Group.

Figure 2.8 shows the minute per minute time correlation function of
the returns of the Standard & Poors 500 futures for a single day, June 20,
1995, whose time series is shown in Figure 2.3. The correlation function
at time lag 7 is nothing but a statistical measure of the strength with
which the present price return resembles the price return at T time steps
in the past. In other words, it quantifies how the future can be predicted
from the knowledge of a single measure of the past, as we show in
the following technical inset. The sum of the correlation function over
all possible time lags (from 1 to infinity) is simply proportional to the
number of occurrences when future returns will be close to the present
return for reasons other than pure chance. A correlation function that
is zero for all nonzero time lags implies that returns are random, as in
a fair dice game. A correlation of 1 corresponds to perfect correlation,
which is found only for the return at a given time with itself. (We should
remark, however, that a zero-correlation function does not rule out com-
pletely the possibility of predicting future prices to some degree, since
other quantities constructed using at least three returns [corresponding to
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FiG. 2.8. Correlation function of the returns at the minute time scale of the
Standard & Poors 500 futures for a single day, June 20, 1995, whose time series
is shown in Figure 2.3. Note the fast decay to zero of the correlations over a few
minutes with a few oscillations. This curve shows that there is a persistence of a
price move lasting a little more than one minute. After two minutes, the price tends
to reverse with a clear anticorrelation (negative correlation) corresponding to a kind
of price reversal. Beyond, the correlation is indistinguishable from noise.

so-called “nonlinear” correlations] may better capture the price dynam-
ics. However, such dependence is much harder to detect, establish, and
use [see chapter 3].) As we see in Figure 2.8, the correlation function is
nonzero only for very short time scales, typically of the order of a few
minutes. This means that, beyond a few minutes, future price variations
cannot be predicted by simple (linear) extrapolations of the past.

Trading strategy to exploit correlations. The reason why, in very liquid
markets of equities and foreign exchanges, for instance, correlations of
returns are extremely small is because any significant correlation would
lead to an arbitrage opportunity that is rapidly exploited and thus washed
out. Indeed, the fact that there are almost no correlations between price
variations in liquid markets can be understood from the following simple
calculation [50, 348]. Consider a return r that occurred at time ¢ and a
return r’ that occurred at a later time ¢/, where ¢ and ¢ are multiples of
some time unit (say 5 minutes). » and r’ can each be decomposed into
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an average contribution and a varying part. We are interested in quanti-
fying the correlation C(¢, ') between the uncertain varying part, which
is defined as the average of the product of the varying part of r and of
r’ normalized by the variance (volatility) of the returns, so that C(z,t =
t) = 1 (perfect correlation between r and itself). A simple mathematical
calculation shows that the best linear predictor m, for the return at time
t, knowing the past history »,_;, 7,5, ... , I; is given by

IERERR)

= e X B M

i<t

where each B(i, t) is a factor that can be expressed in terms of the corre-
lation coefficient C (¢, t) and is usually called the coefficient (i, #) of the
inverse correlation matrix. This formula (1) expresses that each past return
r; impacts on the future return r, in proportion to its value with a coeffi-
cient B(i, t)/B(t, t) which is nonzero only if there is nonzero correlation
between time i and time 7. With this formula (1), you have the best linear
predictor in the sense that it will minimize the errors in variance. Armed
with this prediction, you have a powerful trading strategy: buy if m, > 0
(expected future price increase) and sell if m, < 0 (expected future price
decrease).

Let us consider the limit where only B(t, t) and B(t, t — 1) are nonzero
and the natural waiting time between transactions is approximately equal
to the correlation time taken as the time unit, again equal to five minutes
in this exercise. The point is that you don’t want to trade too much, oth-
erwise you will have to pay for significant transaction costs. The average
return over one correlation time that you will make using this strategy is
of the order of the typical amplitude of the return over these five minutes,
say 0.03% (to account for imperfections in the prediction skills, we take
a somewhat more conservative measure than the scale of 0.04% over one
minute used before). Over a day, this gives an average gain of 0.59%,
which accrues to 435% per year when return is reinvested, or 150% with-
out reinvestment! Such small correlations would lead to substantial profits
if transaction costs and other friction phenomena like slippage did not
exist (slippage refers to the fact that market orders are not always exe-
cuted at the order price due to limited liquidity and finite human execution
time). It is clear that a transaction cost as small as 0.03%, or $3 per
$10,000 invested is enough to destroy the expected gain of this strat-
egy. The conundrum is that you cannot trade at a slower rate in order
to reduce the transaction costs because, if you do so, you lose your pre-
diction skill based on correlations only present within a five minute time

37
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horizon. We can conclude that the residual correlations are those little
enough not to be profitable by strategies such as those described above
due to “imperfect” market conditions. In other words, the liquidity and
efficiency of markets control the degree of correlation that is compatible
with a near absence of arbitrage opportunity.

THE EFFICIENT MARKET HYPOTHESIS
AND THE RANDOM WALK

Such observations have been made for a long time. A pillar of modern
finance is the 1900 Ph.D. thesis dissertation of Louis Bachelier, in Paris,
and his subsequent work, especially in 1906 and 1913 [25]. To account
for the apparent erratic motion of stock market prices, he proposed that
price trajectories are identical to random walks.

THE RANDOM WALK

The concept of a random walk is simple but rich for its many appli-
cations, not only in finance but also in physics and the description of
natural phenomena. It is arguably one of the most important founding
concepts in modern physics as well as in finance, as it underlies the
theories of elementary particles, which are the building blocks of our
universe, as well as those describing the complex organization of matter
around us. In its most simple version, you toss a coin and walk one
step up if heads and one step down if tails. Repeating the toss many
times, where will you finally end up standing? The answer is multiple:
on average, you remain at the same position since the average of one
step down and one step up is equivalent to no move. However, it is clear
that there are fluctuations around this zero average, which grow with the
number of tosses. This is shown in Figure 2.9, where the trajectory of
a synthetic random market price has been simulated by tossing “com-
puter coins” to decide whether to make the price go up or go down.
In this simulation, the steps or increments have random signs and have
amplitudes distributed according to the so-called Gaussian distribution,
the well-known bell curve.

To the eye, it is rather difficult to see the difference between the
synthetic and typical price trajectories such as those in Figures 1.7-1.8,
except at the time of the crash leading to jumps or when there is a strong
market trend or acceleration as in Figures 2.1 and 2.2. This is bad news
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FI1G. 2.9. Synthetic random market price (or position of the random walk) obtained
by tossing “computer coins” to decide whether to make the price go up or down.
In this simulation, the steps or increments have random signs and have amplitudes
distributed according to the so-called Gaussian distribution with a 1% standard devi-
ation. The same increments as in Figure 2.6 have been used: the synthetic price
trajectory observed here is thus nothing but the running sum of the increments shown
in Figure 2.6.

for investment targets: if the price variations are really like tossing coins
at random, it seems impossible to know what the direction of the price
will be between today and tomorrow, or between any two other times.

A qualifying scaling property of random walks. To get a more quan-
titative feeling for how well the random walk model can constitute a
good model of stock market prices, consider Figures 2.3, 2.4, and 2.5 of
return time series at three very different time scales (minute, day, and
month). The most important prediction of the random walk model is that
the square of the fluctuations of its position should increase in proportion
to the time scale. This is equivalent to saying that the typical amplitude
of its position is proportional to the square root of the time scale. This
means that, for instance, if we look at returns over four minute intervals,
the typical return amplitude should be twice (and not four times) that at
the minute time scale. This result is subtle and profound: since a random
walker has the same probability of making a positive or negative step, on
average his position remains where he started. However, it is intuitive that,
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as he accumulates steps randomly, his position deviates from the exact
average, and the longer the time, the larger the deviation of his position
from the origin. Rather than cruising at a constant speed such that his
position increases proportionally with time, a random walker describes an
erratic motion in which the typical fluctuations of his position increase
more slowly than linearly in time, in fact at the square root of time. This
slow increase results from the many retracings of his steps upward and
downward at all scales. Since steps have random =+ signs, their square is
always positive and thus the sum of squares of the steps is increasing in
proportion to the number of steps, that is to time. Due to the randomness
in the sign of steps, the square of the total displacement is equal to the
sum of squares of the steps. Hence we have the result that the square of
the typical amplitude of the fluctuations in a random walk increases in
proportion to time.

Let us see if this prediction is borne out from the data. The underlying
idea of this test is that a return at the daily scale is the sum of the returns
over all the minutes constituting the day. Similarly, a monthly return is the
sum of the daily returns over all the days of this given month. Since the
returns are close to random steps, the previously discussed “square-root”
law should apply. To test it, we observe in Figure 2.3 that the typical
amplitude of the returns at the time scale of 1 minute is about 0.04% (this
is the ordinate of the level of the majority of the values). In Figure 2.4, by
the same estimate made by visual inspection, we estimate a typical ampli-
tude of the return fluctuations of about 1%. Now, 1% divided by 0.04% is
25, which is quite close to the square root 20.25 of the number of minutes
in a trading day (typically 410). Similarly, we estimate from Figure 2.5
that the typical amplitude of the return fluctuations at the monthly scale
is about 5%. The ratio of the monthly value 5% by the daily value of 1%
equal to 5 is not far from the square root of the number of trading days in
a month, typically equal to 20-24. The random walk model thus explains
quite well the way typical returns in the stock market change with time
and with time scale. However, it does not explain the large fluctuations
that are not “typical,” as can be seen in Figures 2.4 and 2.5.

The concept that price variations are inherently unpredictable has been
generalized and extended by the famous economist and Nobel prize
winner Paul Samuelson [357, 358]. In a nutshell, Bachelier [25] and
Samuelson and an army of economists after them have observed that
even the best investors on average seem to find it hard in the long run
to do better than the comprehensive common-stock averages, such as the
Standard & Poors 500, or even better than a random selection among
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stocks of comparable variability. It thus seems as if relative price changes
(properly adjusted for expected dividends paid out) are practically indis-
tinguishable from random numbers, drawn from a coin-tossing computer
or a roulette. The belief is that this randomness is achieved through the
active participation of many investors seeking greater wealth. This crowd
of investors actively analyze all the information at their disposal and
form investment decisions based on them. As a consequence, Bache-
lier and Samuelson argued that any advantageous information that may
lead to a profit opportunity is quickly eliminated by the feedback that
their action has on the price. Their point is that the price variations in
time are not independent of the actions of the traders; on the contrary,
it results from them. If such feedback action occurs instantaneously, as
in an idealized world of idealized “frictionless” markets and costless
trading, then prices must always fully reflect all available information
and no profits can be garnered from information-based trading (because
such profits have already been captured). This fundamental concept intro-
duced by Bachelier, now called “the efficient market hypothesis,” has a
strong counterintuitive and seemingly contradictory flavor to it: the more
active and efficient the market, the more intelligent and hard working the
investors; as a consequence the more random is the sequence of price
changes generated by such a market. The most efficient market of all is
one in which price changes are completely random and unpredictable.
There is an interesting analogy with the information coded in DNA,
the molecular building block of our chromosomes. Here, our genetic
information is encoded by the order in which the four constituent bases
of DNA are positioned along a DNA strand, similarly to words using
a four-letter alphabet. DNA is usually organized in so-called coding
sections and noncoding sections. The coding sections contain the infor-
mation on how to synthetize proteins and how to work all our biological
machinery. Recent detailed analyses of the sequence of these letters have
shown [444, 286, 14] that the noncoding parts of DNA seem to have
long-range correlations while, in contrast, the coding regions seem to
have short-range or no correlations. Notice the wonderful paradox: infor-
mation leads to randomness, while lack of information leads to regulari-
ties. The reason for this is that a coding region must appear random since
all bases contain useful, that is, different information. If there were some
correlation, it would mean that it is possible to encode the information
in fewer bases and the coding regions would not be optimal. In contrast,
noncoding regions contain few or no information and can thus be highly
correlated. Indeed, there is almost no information in a sequence like
1111111... but there may be a lot in 429976545782 . ... This paradox,
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that a message with a lot of information should be uncorrelated while a
message with no information is highly correlated, is at the basis of the
notion of random sequences. A truly random sequence of numbers or
of symbols is one that contains the maximum possible information; in
other words, it is not possible to define a shorter algorithm that contains
the same information [73]. The condition for this is that the sequence be
completely uncorrelated so that each new term carries new information.

It is worthwhile to stop and consider in more detail this extraordi-
nary concept, that the more intelligent and hard working the investors,
the more random is the sequence of price changes generated by such
a market. In particular, it embodies the fundamental difference between
financial markets and the natural world. The latter is open to the scrutiny
of the observer and the scientist has the possibility to construct explana-
tions and theories that are independent of his or her actions. In contrast,
in social and financial systems, the actors are both the observers and
the observed, which thus create so-called feedback loops. The following
simple parable is a useful illustration.

A PARABLE: HOwW INFORMATION IS INCORPORATED IN PRICES,
THUS DESTROYING POTENTIAL “FREE LUNCHES”

Let us assume that half the population of investors are informed today
that the price will go up tomorrow from its present value p,, naturally not
with complete certainty, but still with a rather high probability of 75%
(there is therefore a 25% probability that the price goes down tomorrow).
The other half of the population is kept uninformed and we shall call
them the “noise traders,” after the famous description by Black [40] of
the individuals who trade on what they think is information but is in
fact merely noise. These noise traders will buy and sell on grounds that
are unrelated to the movements of the market, although they believe
the “information” they have is relevant. For noise traders, selling may
be triggered by a need for cash for reasons completely unrelated to the
market. We capture this behavior by tossing coins at random to decide
the fraction y of noise traders who want to sell. Correspondingly, the
fraction of noise traders who want to buy is 1 — y. The important point
is that noise traders are insensitive, by definition, to the present price or
to the price offered for the transaction.

In contrast, the informed traders want to buy because they see an
opportunity for profit with a high success rate—as high as 3 out of 4.
In order to buy, they have to make a bid to a central agent, the “market



FUNDAMENTALS OF FINANCIAL MARKETS 43

maker.” The role of the market maker is to compile all buy and sell offers
and to adjust the price so that the maximum number of transactions can
be satisfied. This is a form of balance between supply and demand.

However, informed traders will not buy at any price because they will
use their special information to estimate what will be their expected gain.
If the price at which they are offered to buy by the market maker is
larger than their expectation for the price increase, they will not have
an incentive to buy. We call (6p, ) the expected gain conditioned on the
realization of the tip (i.e., that the price will increase). The fraction of
informed traders still willing to buy at a price x above the last quoted
price p, is clearly a decreasing function of x. Two limits are simple to
guess: for x = 0, all the informed traders want to buy at price p, because
the expected gain is positive. In contrast, for x equal to (6p, ) or larger,
the offered buy price is larger than the price expected tomorrow on the
basis of the prediction, and none of the informed traders wish to buy
due to the unfavorable probability of a loss. In between, we will for
simplicity assume a linear relationship fixing the fraction of informed
traders willing to buy at the price p, 4+ x, which interpolates smoothly
between these two extremes, as shown in Figure 2.10.

The decision of the informed traders depends on the noise traders. We
assume for simplicity that each seller (respectively, buyer) sells (buys)
only one stock. Then two situations can occur.

Fraction of informed
traders willing to buy

o

pPo+ <dp:

°
=)

“Ask Price”

FiG. 2.10. Fraction of informed traders who are willing to buy as a function of the
“ask price”: if the ask price is the last quote p,, all the informed traders want to
bid for the stock because their expected return is positive. If the ask price is equal
to or larger than the last quote plus the expected increase, informed traders are
not interested in bidding for the stock. This dependence corresponds to so-called
“risk-neutral” agents.
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e If the fraction y of noise traders who sell is less than 1/2, there is a
severe undersupply of stocks: both the fraction 1 —y > 1/2 of noise
traders and all the informed traders want to buy. The selling noise
traders cannot even supply enough stocks for their buying counterparts,
not to mention to the aggressive informed traders. In this situation, the
market maker increases the price up to the level at which informed
traders turn down the buying offer. For the noise traders, the price
does not make a difference since they have no information on what the
future price will be. In this situation, where y < 1/2, the transaction
price therefore is equal to the minimum price p, + (6p,) at which
all informed traders turn down the buying option. There is no average
profit from selling later at the expected future price p, + (6p. ), since
it equals the buying price! Note in contrast that, in the absence of
informed traders, the profit opportunity would remain, as the buying
price is unchanged at p,. It is the presence of the informed traders that
pushes the price up to the threshold where they do not wish to act.
While the informed traders do not appear explicitly in this transaction,
their bid to the market maker has pushed the price up, such that the
profit opportunity has disappeared.

e The second situation occurs when the fraction y of noise traders who
sell is larger than 1/2. They can then supply all their buying coun-
terparts as well as a fraction of the informed traders. The price of
the transaction p, + x is then set by the market maker such that the
fraction of the informed traders willing to buy at this price is equal to
the remaining available stock after the buying noise traders have been
served. Counting all possible outcomes for y larger than 1/2 (but of
course smaller than 1), we see that the average of y, conditioned to be
larger than 1/2, is 3/4, the middle point between 1/2 and 1. Thus, the
average transaction price is 1/2 the expected conditional gain (Sp_ )
(x = (6p,)/2), such that 1/2 of the informed traders are still willing
to buy. In this situation, the balance of supply and demand is upheld:
the average fraction, 3/4, of noise traders who sell balances exactly
the other 1/4 of buying noise traders and the 1/2 of the informed
traders.

What, then, is the expected gain for the informed traders? It is (the
probability 3/4 that the price increases) times (the average gain (6p_ ) —
x) minus (the probability 1/4 that the price decreases) times (the loss
amplitude). This loss amplitude is x minus the expected amplitude of
the price drop, conditioned on its drop. By symmetry of the distribution
of price variations (very well verified in most stock markets), this is the



FUNDAMENTALS OF FINANCIAL MARKETS 45

same in amplitude as the expected conditional gain (6p_ ). In sum, the
total expected gain is

(3/4) x ((6p,) — x) = (1/4)((ép,) + x). 2)

Using the above result, x = (6p_)/2, we find that this is in fact zero:
the action of the noise traders and the response of the informed traders
to them and to their information makes the buying price increase to a
level p, + x such that the expected gain vanishes!

PrRICES ARE UNPREDICTABLE, OR ARE THEY?

This conclusion remains qualitatively robust against a change of the value
of the parameters of this toy model or of the buying strategies devel-
oped by the informed traders. This simple model illustrates the following
fundamental ideas.

1. Acting on advantageous information moves the price such that the a
priori gain is decreased or even destroyed by the feedback of the action
on the price. This makes concrete the concept that prices are made
random by the intelligent and informed actions of investors, as put
forward by Bachelier, Samuelson, and many others. In contrast, without
informed traders, the profit opportunity remains, since the buying price
is unchanged at p,,.

2. Noise traders are essential for the function of the stock market. They
are known under many names: sometimes as speculators, or traders
basing their strategies on technical indicators or on supposedly relevant
economic information. All informed traders in our example agree that
the best strategy is to buy. However, in the absence of noise traders,
they would not find any counterpart, and there would be no trade: If
everybody agrees on the price, why trade? No profit can be made. Thus
the stock market needs the existence of some “noise,” however small,
which provides “liquidity.” Then, the intelligent traders work hard and,
according to this theory, will by their investments make the market
totally and utterly noisy, with no remaining piece of intelligible signal.

3. The fact that the informed traders are unable on average to make a
profit notwithstanding their large confidence in an upward move is not
in contradiction with the notion that, if you alone had this information
and were willing to be cautious and trade only a few stocks, you would
on average be able to make a good profit. The reason is simply that



46 CHAPTER 2

your small action would not have a significant impact on the market. In
contrast, if you were bold enough to borrow a lot and buy a significant
share of the market, you would move the price up, in a way similar to
the informed traders who constitute half of the total population. Thus,
the price dynamics becomes random only if there are sufficiently many
informed traders to affect the dynamics by their active feedback.

General proof that properly anticipated prices are random. Samuel-
son has proved a general theorem showing that the concept that prices
are unpredictable can actually be deduced rigorously [357] from a model
that hypothesizes that a stock’s present price p, is set at the expected
discounted value of its future dividends d,, d,, , d, 5, ... (which are sup-
posed to be random variables generated according to any general (but
known) stochastic process):

pr=d,+68d+068,d,,+60,8,d, 5+, (3)

where the factors 6, = 1 — r < 1, which can fluctuate from one time
period to the next, account for the depreciation of a future price calculated
at present due to the nonzero consumption price index r. We see that
p, = d, + 8,p,,,, and thus the expectation E(p,, ) of p,,, conditioned on
the knowledge of the present price p, is

p,—d,

5 @

E(pz+1) =

This shows that, barring the drift due to the inflation and the dividend, the
price increment does not have a systematic component or memory of the
past and is thus random. Therefore, even when the economy is not free to
wander randomly, intelligent speculation is able to transform the observed
stock-price changes into a random process.

At first glance, these ideas seem to be confirmed by the data. As
shown in Figure 2.7, the distributions of positive and negative returns are
almost identical: there is almost the same probability for a price increase
or a decrease. In addition, Figure 2.8 has taught us that returns are essen-
tially decorrelated beyond a few minutes in active and well-organized
markets. As a consequence, successive returns cannot be predicted by
linear extrapolations of the past.

However, as already noted, this does not exclude the possibility that
there might be other kinds of dependence between price variations of a
more subtle nature, which might remain either because they have not yet
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been detected or taken advantage of by traders or because they are not
providing significant profit opportunities.

Asymmetry between positive and negative returns. The distribution of
price variations may often exhibit a residual bias associated with the over-
all rate of return of the market. For instance, for a 10% annual return, this
corresponds to an average daily drift of approximately 10%/365 = 0.03%.
This value is small compared to the typical scale of daily fluctuations of
the order of 1% for most markets (and more for growth and emergent
markets which present a larger volatility). Such a drift translates into a
bias in the frequency of gains versus losses. For the DJIA from 1897 to
1997, over the 27,819 trading days, the market declined on 13,091 days
and rose on 14,559 days. This translates into a 47.06% probability of a
decline and a 52.34% probability of a stock market rise (the probabil-
ities do not sum up to 1 because there were some days for which the
price remained unchanged). In a similar fashion, the decline probability is
47.27% during the 1946-1997 DIJIA period and 46.86% during 1897-1945
(about 0.5% lower). Preserving the same qualitative pattern, during the
1897-1997 DIJIA period, the weekly decline (rise) probability is 43.98%
(55.87%). For the Nasdaq from 1962 to 1995, the daily decline (rise)
probability is 46.92% (52.52%). For the IBM stock from 1962-1996, the
daily decline (rise) probability is 47.96% (48.25%).

RISK-RETURN TRADE-OFF

One of the central insights of modern financial economics is the neces-
sity of some trade-off between risk and expected return, and although
Samuelson’s version of the efficient markets hypothesis places a restric-
tion on expected returns, it does not account for risk in any way. In
particular, if a security’s expected price change is positive, it may be just
the reward needed to attract investors to hold the asset and bear the asso-
ciated risks. Indeed, if an investor is sufficiently risk averse, he might
gladly pay to avoid holding a security that has unforecastable returns.
Grossman and Stiglitz [180] went even further. They argue that per-
fectly informationally, efficient markets are an impossibility, for if mar-
kets are perfectly efficient, the return on gathering information is nil, in
which case there would be little reason to trade and markets would even-
tually collapse. Alternatively, the degree of market inefficiency deter-
mines the effort investors are willing to expend to gather and trade on
information, hence a nondegenerate market equilibrium will arise only
when there are sufficient profit opportunities, that is, inefficiencies, to
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compensate investors for the costs of trading and information-gathering.
The profits earned by these industrious investors may be viewed as eco-
nomic rents that accrue to those willing to engage in such activities. Who
are the providers of these rents? Black [40] gave us a provocative answer:
noise traders, individuals who trade on what they think is information
but is in fact merely noise. More generally, at any time there are always
investors who trade for reasons other than information (for example,
those with unexpected liquidity needs), and these investors are willing
to “pay up” for the privilege of executing their trades immediately.



CHAPTER 3

FINANCIAL CRASHES
ARE “OUTLIERS”

In the spirit of Bacon in Novum Organum about
400 years ago, “Errors of Nature, Sports and Monsters correct the under-
standing in regard to ordinary things, and reveal general forms. For who-
ever knows the ways of Nature will more easily notice her deviations;
and, on the other hand, whoever knows her deviations will more accu-
rately describe her ways,” we propose in this chapter that large market
drops are “outliers” and that they reveal fundamental properties of the
stock market.

WHAT ARE “ABNORMAL” RETURNS?

Stock markets can exhibit very large motions, such as rallies and crashes,
as shown in Figures 2.4 and 2.5. Should we expect these extreme varia-
tions? Or should we consider them anomalous?

Abnormality is a relative notion, constrasted to what is considered
“normal.” Let us take an example. In the Bachelier-Samuelson financial
world, in which returns are distributed according the Gaussian bell-shape
distribution, all returns are scaled to a fundamental “ruler” called the
standard deviation. Consider the daily time scale and the corresponding
time series of returns of the Dow Jones index shown in Figure 2.4. As
we indicated in chapter 2, the standard deviation is close to 1%. In this
Gaussian world, it is easy to quantify the probability of observing a given
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TaBLE 3.1

X Probability_ One in N events Calendar waiting time

1 0.317 3 3 days

2 0.045 22 1 month

3 0.0027 370 1.5 year

4 6.3 x 1073 15,787 63 years

5 5.7 x 1077 1.7 x 10° 7 millenia

6 2.0 x 107 5.1 x 108 2 million years

7 2.6 x 10712 3.9 x 10" 1562 million years

8 1.2 x 107 8.0 x 10™ 3 trillion years

9 23 x 107" 4.4 x 10" 17,721 trillion years
10 1.5x 1072 6.6 x 10?2 260 million trillion years

How probable is it to observe a return larger in amplitude (i.e., in absolute value) than some value
equal to X times the standard deviation? The answer is given in this table for the Gaussian world.
The left column gives the list of values of X from 1 to 10. The second column gives the probability
that the absolute value of the return is found larger than X times the standard deviation. The third
column translated this probability into the number of periods (days in our example) one would
typically need to wait to witness such a return amplitude. The fourth column translates this waiting
time into calendar time in units adapted to the value, using the conversion that one month contains
approximately 20 trading days and one year contains about 250 trading days. For comparison, the
age of the universe is believed to be (only) of the order of 10-15 billion years.

return amplitude, as shown in Table 3.1. We read that a daily return
amplitude of more than 3% should be typically observed only once in
1.5 years. A daily return amplitude of more than 4% should be typically
observed only once in 63 years, while a return amplitude of more than
5% should never be seen in our limited history.

Armed with this Table 3.1, it is now quite clear what is “normal” and
what can be considered “abnormal” according to the Gaussian model.
The drop of —22.6% on October 19, 1987 and the rebound of +9.7%
on October 21, 1987 are abnormal: they should not occur according to
the standard Gaussian model. They are essentially impossible. The fact
that they occurred tells us that the market can deviate significantly from
the norm. When it does, the “monster” events that the market creates are
“outliers.” In other words, they lie “out” and beyond what is possible for
the rest of the population of returns.

In reality, the distributions of returns are not Gaussian, as shown in
Figure 2.7. If they were, they would appear as inverted parabola in this
semilogarithmic plot. The approximate linear dependence qualifies rather
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as a dependence not far from an exponential law. In this new improved
representation, we can again calculate the probability of observing a
return amplitude larger than, say, 10 standard deviations (10% in our
example). The result is 0.000045, which corresponds to one event in
22,026 days, or in 88 years. The rebound of October 20, 1987 becomes
less extraordinary. Still, the drop of 22.6% of October 19, 1987 would
correspond to one event in 520 million years, which qualifies it as an
“outlier.”

Thus, according to the exponential model, a 10% return amplitude
does not qualify as an “outlier” in a clear-cut and undisputable manner.
In addition, we see that our discrimination between normal and abnormal
returns depends on our choice for the frequency distribution. Qualifying
what is the correct description of the frequency distribution, especially
for large positive and negative returns, is a delicate problem that is still a
hot domain for research. Due to the lack of certainty on the best choice
for the frequency distribution, this approach does not seem the most
adequate for characterizing anomalous events.

Up to now, we have only looked at the distribution or frequency of
returns. However, the complex time series of returns have many other
structures not captured by the frequency distribution. We have already
discussed the additional diagnostic in terms of the correlation function
shown in Figure 2.8. We now introduce another diagnostic that allows
us to characterize abnormal market phases in a much more precise and
nonparametric way, that is, without referring to a specific mathematical
representation of the frequency distribution.

DRAWDOWNS (RUNS)
DEFINITION OF DRAWDOWNS

One measure going beyond the simple frequency statistics and the
linear correlations is provided by the statistics of “drawdowns.” A draw-
down is defined as a persistent decrease in the price over consecutive
days. A drawdown, as shown in Figure 3.1, is thus the cumulative
loss from the last maximum to the next minimum of the price. Draw-
downs are indicators that we care about: they measure directly the
cumulative loss that an investment may suffer. They also quantify
the worst-case scenario of an investor buying at the local high and
selling at the next minimum. It is thus worthwhile to ask if there is



52 CHAPTER 3

DJIA
2800

2600

2400 \/\

2200

Close Price

2000 A 1

1800
v

1600 : : :
1987.77 1987.79 1987.81 1987.83 1987.85

Time (decimal years)

F1G. 3.1. Definition of drawdowns. Taking the example of the crash that occurred
on October 19, 1987, this figure shows three drawdowns corresponding to cumula-
tive losses from the last maximum to the next minimum of the price. The largest
drawdown of a total loss of —30.7% is made of four successive daily drops: on
October 14, 1987 (1987.786 in decimal years), the DJIA index is down by 3.8%; on
October 15, the market is down 6.1%; on October 16, the market is down 10.4%.
The weekend passes and the drop on Black Monday October 19, 1987 leads to a
cumulative loss or drawdown of 30.7%. In terms of consecutive daily losses, this
correspond to the series 3.8%, 2.4%, 4.6%, and 22.6% (note that returns are not
exactly additive, since they are price variations normalized by the price, which itself
varies).

any structure in the distribution of drawdowns absent in that of price
variations.

Drawdowns embody a rather subtle dependence since they are con-
structed from runs of the same sign variations (see below). Their distri-
bution thus capture the way successive drops can influence each other
and construct in this way a persistent process. This persistence is not
measured by the distribution of returns because, by its very definition, it
forgets about the relative positions of the returns as they unravel them-
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selves as a function of time by only counting their frequency. This is
also not detected by the two-point correlation function, which measures
an average linear dependence over the whole time series, while the
dependence may only appear at special times, for instance for very large
runs, as we shall demonstrate below, a feature that will be washed out
by the global averaging procedure.

A nonlinear model with zero correlation but high predictability. To
understand better how subtle dependences in successive price variations
are measured by drawdowns, let us play the following game in which
the price increments &p(¢) are constructed according to the following
rule:

op(t) = €(t) + e(t — e(r — 2), (5)

where €(r) is a white noise process with zero mean and unit variance.
For instance, €(t) is either +1 or —1 with probability 1/2. The definition
(5) means that the price variation today is controlled by three random
coin tosses, one for today, yesterday, and the preceeding day, such that a
positive coin toss today as well as two identical coin tosses yesterday and
the day before make the price move up. Reciprocally, a negative coin toss
today as well as two different coin tosses yesterday and the day before
make the price move down.

It is easy to check that the average E(ép(t)) as well as the two-point
correlation E(6p(¢)op(t")) for ¢t # t' are zero and 6p(t) is thus also
a white noise process. Intuitively, this stems from the fact that an odd
number of coin tosses € enter into these diagnostics, whose average
is zero ((1/2) x (4+1) + (1/2) x (=1) = 0). However, the three-point
correlation function E(ép(t — 2)6p(t — 1)dp(t)) is nonzero and equal
to 1 and the expectation of Op(z) given the knowledge of the rwo
previous increments 6p(t — 2) and Op(t — 1) is nonzero and equal
to E(6p(1)|6p(t — 2),6p(t — 1)) = 6p(t — 2)ép(t — 1). This means
that it is possible to predict the price variation today with better suc-
cess than 50%, knowing the price variations of yesterday and the day
before!

While the frequency distribution and the two-point correlation func-
tion are blind to this dependence structure, the distribution of drawdowns
exhibits a specific diagnostic. To simplify the analysis and make the mes-
sage very clear, let us again restrict to the case where €(¢) can only take
two values +1. Then, &p(¢) can take only three values 0 and +2, with
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the correspondence

€(t—2),e(t—1),e(r) — 0Op(1),
+++ - 42,
++- - 0,
+-+ - 0,
+-- - -2
-++ - 0
-—4+- - =2,
-——+ - +2,
——= = 0,

where the left column gives the three consecutive values e(t — 2), €(t —
1), €(¢) and the right column is the corresponding price increment 6p (7).
We see directly by this explicit construction that 6p(¢) is a white noise
process. However, there is a clear predictability and the distribution
of drawdowns reflects it: there are no drawdowns of duration larger
than two time steps. Indeed, the worst possible drawdown corresponds
to the following sequence for e: — — 4+ — —. This corresponds to the
sequence of price increments +2, —2, —2, which is either stopped by
a +2 if the next € is 4+ or by a sequence of Os interrupted by a +2
at the first € = 4. While the drawdowns of the process €(f) can in
principle be of infinite duration, the drawdowns of p(t) cannot. This
shows that the structure of the process 6p(t) defined by (5) has a dra-
matic signature in the distribution of drawdowns in p(¢). This illustrates
that drawdowns, rather than daily or weekly returns or any other fixed
time scale returns, are more adequate time-elastic measures of price
moves.

DRAWDOWNS AND THE DETECTION OF “OUTLIERS”

To demonstrate further the new information contained in drawdowns and
contrast it with the fixed time-scale returns, let us consider the hypo-
thetical situation of a crash of 30% occurring over three days with three
successive losses of exactly 10%. The crash is thus defined as the total
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loss or drawdown of 30%. Rather than looking at drawdowns, let us
now follow the common approach and examine the daily data, in par-
ticular the daily distribution of returns. The 30% drawdown is now seen
as three daily losses of 10%. The essential point to realize is that the
construction of the distribution of returns amounts to counting the num-
ber of days over which a given return has been observed. The crash will
thus contribute to three days of 10% loss, without the information that
the three losses occurred sequentially! To see what this loss of infor-
mation entails, we consider a market in which a 10% daily loss occurs
typically once every four years (this is not an unreasonable number for
the Nasdaq composite index at present times of high volatility). Counting
approximately 250 trading days per year, four years correspond to 1,000
trading days and one event in 1,000 days thus corresponds to a proba-
bility 1/1,000 = 0.001 for a daily loss of 10%. The crash of 30% has
been dissected as three events that are not very remarkable (each with a
relatively short average recurrence time of four years). The plot thickens
when we ask, What is, according to this description, the probability for
three successive daily losses of 10%? Elementary probability tells us that
it is the probability of one daily loss of 10% times the probability of
one daily loss of 10% times the probability of one daily loss of 10%.
The rule of products of probability holds if the three events are consid-
ered to be independent. This products gives 0.001 x 0.001 x 0.001 =
0.000,000,001 = 10~°. This corresponds to one event in 1 billion trad-
ing days! We should thus wait typically 4 millions years to witness such
an event!

What has gone wrong? Simply, looking at daily returns and at
their distributions has destroyed the information that the daily returns
may be correlated, at special times! This crash is like a mammoth
that has been dissected in pieces without memory of the connection
between the parts, and we are left with what look like mouses (bear
with the slight exaggeration)! Our estimation that three successive
losses of 10% are utterly impossible relied on the incorrect hypoth-
esis that these three events are independent. Independence between
successive returns is remarkably well verified most of the time. How-
ever, it may be that large drops may not be independent. In other
words, there may be “bursts of dependence,” that is, “pockets of
predictability.”

It is clear that drawdowns will keep precisely the information rel-
evant to identifying the possible burst of local dependence leading to
possibly extraordinarily large cumulative losses.
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EXPECTED DISTRIBUTION OF “NORMAL” DRAWDOWNS

Before returning to the data, we should ask ourselves what can be
expected on the basis of the random walk hypothesis. If price variations
are independent, positive (4+) and negative (—) moves follows each other
like the “heads” and “tails” of a fair coin toss. For symmetric distribu-
tions of price variations, starting from a positive, +, the probability to
have one negative, —, is 1/2. The probability to have two negatives in a
row is 1/2 x 1/2 = 1/4; the probability to have three negatives in a row
is 1/2 x1/2 x 1/2 =1/8, and so on. For each additional negative, we
observe that the probability is divided by two. This defines the so-called
exponential distribution, describing the fact that increasing a drawdown
by one time unit makes it doubly less probable. This exponential law is
also known as the Poisson law and describes processes without mem-
ory: for the sequence + — — — —, the fact that four negatives have
occurred in a row does not modify the probability for the new event,
which remains 1/2 for both a positive and a negative. Such a memory-
less process may seem counterintuitive (many people would rather bet
on a tail after a sequence of ten heads than on another head; this is often
refered to as the “gambler’s fallacy”) but it reflects accurately what we
mean by complete randomness: in a fair coin toss, it can happen that ten
heads in a row are drawn. The eleventh event still has the probability
of 1/2 to be head. The absence of memory of such random processes
can be stated as follows: given the past observation of n successive
negatives, the probability for the next one is unchanged from the uncon-
ditional value 1/2 independently of the value of n. Any deviation from
this exponential distribution of drawdowns will signal some correlation
in the process and thus a potential for a prediction of future events.

Since, in the random memoryless model, there are half as many draw-
downs of duration one time step longer, it is convenient to visualize
the empirical distribution of drawdowns on the stock market on a loga-
rithmic scale, where the expected exponential distribution of drawdowns
becomes a straight line. This is a quite efficient method to test for the
validity of the hypothesis: deviations from the straight line will sig-
nal some deviation from the exponential distribution and thus from the
hypothesis of absence of memory.

The evidence presented below on the presence of “outliers” does
not rely on the validity of this Poisson law. Actually, we have iden-
tified slight deviations from it already in the bulk of the distribution
of drawdowns, suggesting a subtle departure from the hypothesis of
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independence between successive price returns. This leads us to a quite
delicate point that escaped the attention of even some of our cleverest
colleagues for some time and is still overlooked by many others. This
subtle point is that the evidence for outliers and extreme events does
not require and is not even synonymous in general with the existence
of a break in the distribution of the drawdowns. Let us illustrate this
pictorially and forcefully by borrowing from another domain of active
scientific investigation, namely the search for an understanding of the
complexity of eddies and vortices in turbulent fluid flows, such as in a
mountain river or in atmospheric weather. Since solving the exact equa-
tions of these flows does not provide much insight as the results are
forbidding, a useful line of attack has been to simplify the problem by
studying simple toy models, such as so-called “shell” models of turbu-
lence, that are believed to capture the essential ingredient of these flows,
while being amenable to analysis. Such “shell” models replace the three-
dimensional spatial domain by a series of uniform onion-like spherical
layers with radii increasing as a geometrical series 1,2,4,8, ... ,2" and
communicating with each other mostly with nearest neighbors.

As for financial returns, a quantity of great interest is the distribu-
tion of velocity variations between two instants at the same position or
between two points simultaneously. Such a distribution for the square of
the velocity variations is shown in Figure 3.2. Notice the approximate
exponential drop-off represented by the straight line and the coexistence
with larger fluctuations on the right for values above 4 up to 7 and
beyond (which are not shown). Usually, such large fluctuations are not
considered to be statistically significant and do not provide any specific
insight. Here, it can be shown that these large fluctuations of the fluid
velocity correspond to intensive peaks propagating coherently over sev-
eral shell layers with a characteristic bell-like shape, approximately inde-
pendent of their amplitude and duration (up to a rescaling of their size
and duration). When extending the observations to much longer times so
that the anomalous fluctuations beyond the value 4 in Figure 3.2 can be
sampled much better, one gets the continuous curves (apart from some
residual noise always present) shown in Figure 3.3. Here, each of the
three curves corresponds to the measurement of a distribution in a given
shell layer (n = 11, 15, and 18).

In Figure 3.3, a standard transformation has been performed, that is,
contracting or magnifying the abscissa and ordinate for each curve so
that the three curves are collapsed on each other. If one succeeds in doing
so, this means that, up to a definition of units, the three distributions
are identical, which is very helpful for understanding the underlying
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F1G. 3.2. Apparent probability distribution function of the square of the fluid veloc-
ity, normalized to its time average, in the eleventh shell of the toy model of hydro-
dynamic turbulence discussed in the text. The vertical axis is in logarithmic scale
such that the straight line, which helps the eye, qualifies as an apparent exponential
distribution. Note the appearance of extremely sparse and large bursts of velocities at
the extreme right above the extrapolation of the straight line. Reproduced from [252].

mechanism as well as for future use for risk assessement and control.
Naively, we would expect that the same physics apply in each shell layer
and that, as a consequence, the distributions should be the same, up to
a change of unit reflecting the different scale embodied by each layer.
Here, we observe that the three curves are indeed nicely collapsed, but
only for the small velocity fluctuations, while the large fluctuations are
described by very different heavy tails. Alternatively, when one tries to
collapse the curves in the region of the large velocity fluctuations, then
the portions of the curves close to the origin are not collapsed at all and
are very different. The remarkable conclusion is that the distributions
of velocity increment seem to be composed of two regions, a region of
so-called “normal scaling” and a domain of extreme events.

Here is the message that comes out of this discussion: the concept
of outliers and of extreme events does not rest on the requirement that
the distribution should not be smooth, as shown on the right side of
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F1G. 3.3. Probability distribution function of the square of the velocity as in Figure
3.2 but for a much longer time series, so that the tail of the distributions for very
large fluctuations is much better constrained. The hypothesis that there are no out-
liers is tested here by “collapsing” the distributions for the three shown layers. While
this is a success for small fluctuations, the tails of the distributions for large events
are very different, indicating that extreme fluctuations belong to a class of their own,
and hence are outliers. The vertical axis is again in logarithmic scale. Reproduced
from [252].

Figure 3.2. Noise and the very process of constructing the distribution
will almost always smooth out the curves. What is found here [252]
is that the distribution is made of two different populations, the body
and the tail, which have different physics, different scaling, and different
properties. This is a clear demonstration that this model of turbulence
exhibits outliers in the sense that there is a well-defined population of
very large and quite rare events that punctuate the dynamics and that can-
not be seen as scaled-up versions of the small fluctuations. It is tempting
to conjecture that the anomalous “scaling” properties of turbulence might
be similarly controlled by the coexistence of normal innocuous velocity
fluctuations and extreme concentrated events, possibly associated with
specific vortex filaments or other coherent structures [371].

As a consequence, the fact that the distribution of small events might
show some curvature or continuous behavior does not say anything
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against the outlier hypothesis. It is essential to keep this point in mind
in looking at the evidence presented below for the drawdowns.

DRAWDOWN DISTRIBUTIONS OF STOCK
MARKET INDICES

THE Dow JONES INDUSTRIAL AVERAGE

Figure 3.4 shows the distribution of drawdowns for the returns of the
DIJIA over this century.

The exponential distribution discussed in the previous section has
been derived on the assumption that successive price variations are inde-
pendent. There is a large body of evidence for the correctness of this
assumption for most trading days [68]. However, consider, for instance,
the fourteen largest drawdowns that have occurred in the DJIA in this
century. Their characteristics are presented in Table 3.2. Only three lasted
one or two days, whereas nine lasted four days or more. Let us exam-
ine in particular the largest drawdown. It started on October 14, 1987
(1987.786 in decimal years), lasted four days, and led to a total loss of
—30.7%. This crash is thus a run of four consecutive losses: first day, the
index is down by 3.8%; second day, by 6.1%; third day, by 10.4%; and

—— Null Hypothesis
; y /
+ 'Negative Draw Downs’ /
~ 7
B
3 /
€ 6
2 /
)
2 y4
54
F]
E /
Y ++y
+

g2 —
- +

1 N +

0 + /

| | | | | |

0.3 0.25 0.2 0.15 0.1 0.05 0
Draw Down

F1G. 3.4. Number of times a given level of drawdown has been observed in this
century for the DJIA. Reproduced from [220].
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TABLE 3.2
Characteristics of the 14 largest drawdowns of the DJIA in the twentieth century

Rank Starting time Index value Duration (days) Loss
1 87.786 2508.16 4 —30.7%
2 14.579 76.7 2 —28.8%
3 29.818 301.22 3 —23.6%
4 33.549 108.67 4 —18.6%
5 32.249 77.15 8 —18.5%
6 29.852 238.19 4 —16.6%
7 29.835 273.51 2 —16.6%
8 32.630 67.5 1 —14.8%
9 31.93 90.14 7 —14.3
10 32.694 76.54 3 —13.9%
11 74.719 674.05 11 —13.3%
12 30.444 239.69 4 —12.4%
13 31.735 109.86 5 —12.9
14 98.649 8602.65 4 —12.4%

The starting dates are given in decimal years. Reproduced from [220].

fourth day by 30.7%. In terms of consecutive losses, this corresponds
to 3.8%, 2.4%, 4.6%, and then 22.6% on what is known as the Black
Monday of October 1987.

The observation of large successive drops is suggestive of the exis-
tence of a transient correlation, as we already pointed out. For the Dow
Jones, this reasoning can be adapted as follows. We use a simple func-
tional form for the distribution of daily losses, namely an exponential
distribution with decay rate 1/0.63% obtained by a fit to the distribution
of drawdowns shown in Figure 3.4. The quality of the exponential model
is confirmed by the direct calculation of the average loss amplitude equal
to 0.67% and of its standard deviation equal to 0.61% (recall that an
exact exponential would give the three values exactly equal: 1/decay =
average = standard deviation). Using these numerical values, the prob-
ability for a drop equal to or larger than 3.8% is exp(—3.8/0.63) =
2.4-107% (an event occurring about once every two years); the probabil-
ity for a drop equal to or larger than 2.4% is exp(—2.4/0.63) = 2.2-1072
(an event occurring about once every two months); the probability for
a drop equal to or larger than 4.6% is exp(—4.6/0.63) = 6.7 -10~*
(an event occurring about once every six years); the probability for a
drop equal to or larger than 22.6% is exp(—22.6/0.63) = 2.6 - 107'° (an
event occurring about once every 10'* years). All together, under the
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hypothesis that daily losses are uncorrelated from one day to the next,
the sequence of four drops making the largest drawdown occurs with a
probability 10723, that is, once in about 4 thousands of billions of bil-
lions of years. This exceedingly negligible value 10~2* suggests that the
hypothesis of uncorrelated daily returns is to be rejected: drawdowns,
especially the large ones, may exhibit intermittent correlations in the
asset price time series.

THE NASDAQ COMPOSITE INDEX

In Figure 3.5, we see the rank ordering plot of drawdowns for the Nasdaq
composite index, from its establishment in 1971 until April 18, 2000.
The rank ordering plot, which is the same as the (complementary) cumu-
lative distribution with axes interchanged, puts emphasis on the largest
events. The four largest events are not situated on a continuation of the
distribution of smaller events: the jump between rank 4 and 5 in relative
value is larger than 33%, whereas the corresponding jump between rank
5 and 6 is less than 1%, and this remains true for higher ranks. This
means that, for drawdowns less than 12.5%, we have a more or less
“smooth” curve and then a larger than 33% gap to rank 3 and 4. The
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F1G. 3.5. Rank ordering of drawdowns in the Nasdaq composite since its establish-
ment in 1971 until April 18, 2000. Rank 1 (Apr. 2000) is the largest drawdown,
rank 2 (Oct. 1987, top) is the second largest, etc. Reproduced from [217].
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four events are, according to rank, the crash of April 2000, the crash
of October 1987, a larger than 17% “aftershock” related to the crash of
October 1987, and a larger than 16% drop related to the “slow crash” of
August 1998, which we shall discuss later, in chapter 7.

To further establish the statistical confidence with which we can con-
clude that the four largest events are outliers, we have reshuffled the
daily returns 1,000 times and hence generated 1,000 synthetic data sets.
This procedure means that the synthetic data sets will have exactly the
same distribution of daily returns. However, higher order correlations and
dependence that may be present in the largest drawdowns are destroyed
by the reshuffling. This so-called “surrogate” data analysis of the distri-
bution of drawdowns has the advantage of being nonparametric, that is,
independent of the quality of fits with a model such as the exponential
or any other model. We will now compare the distribution of drawdowns
for both the real data and the synthetic data. With respect to the synthetic
data, this can be done in two complementary ways.

In Figure 3.6, we see the distribution of drawdowns in the Nasdaq
composite compared with the two lines constructed at the 99% con-
fidence level for the entire ensemble of synthetic drawdowns, that is,
by considering the individual drawdowns as independent: for any given
drawdown, the upper (respectively, lower) confidence line is such that

1.0 =
- —— Nasdaqg Composite
- -~ 99% confidence line
- --x-- 99% confidence line
- .$‘
0.1 :
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Normalised Cumulative Distribution
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FiG. 3.6. Normalized cumulative distribution of drawdowns in the Nasdaq
composite since its establishment in 1971 until April 18, 2000. The 99% confidence
lines are estimated from the synthetic tests described in the text. Reproduced from
[217].
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five of the synthetic distributions are above (below) it; as a consequence,
990 synthetic times series out of the 1,000 are within the two confidence
lines for any drawdown value, which defines the typical interval within
which we expect to find the empirical distribution.

The most striking feature apparent in Figure 3.6 is that the distri-
bution of the true data breaks away from the 99% confidence intervals
at approximately 15%, showing that the four largest events are indeed
“outliers.” In other words, chance alone cannot reproduce these largest
drawdowns. We are thus forced to explore the possibility that an ampli-
fication mechanism and dependence across daily returns might appear at
special and rare times to create these outliers.

A more sophisticated analysis is to consider each synthetic data set
separately and calculate the conditional probability of observing a given
drawdown given some prior observation of drawdowns. This gives a
more precise estimation of the statistical significance of the outliers,
because the previously defined confidence lines neglect the correlations
created by the ordering process which is explicit in the construction of
a cumulative distribution.

Out of 10,000 synthetic data sets that were generated, we find that 776
had a single drawdown larger than 16.5%, 13 had two drawdowns larger
than 16.5%, 1 had three drawdowns larger than 16.5%, and none had 4
(or more) drawdowns larger than 16.5% as in the real data. This means
that, given the distribution of returns, by chance we have an 8% prob-
ability of observing a drawdown larger than 16.5%, a 0.1% probability
of observing two drawdowns larger than 16.5%, and for all practical
purposes, zero probability of observing three or more drawdowns larger
than 16.5%. Hence, we can reject the hypothesis that the four largest
drawdowns observed on the Nasdaq composite index could result from
chance alone with a probability or confidence better than 99.99%, that
is, essentially with certainty. As a consequence, we are led again to
conclude that the largest market events are characterized by a stronger
dependence than is observed during “normal” times.

This analysis confirms the conclusion from the analysis of the DJIA
shown in Figure 3.4 that drawdowns larger than about 15% are to be
considered as outliers with high probability. It is interesting that the same
amplitude of approximately 15% is found for both markets considering
the much larger daily volatility of the Nasdaq composite. This may result
from the fact that, as we have shown, very large drawdowns are more
controlled by transient correlations leading to runs of losses lasting a
few days than by the amplitude of a single daily return.
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The statistical analysis of the DJIA and the Nasdaq composite sug-
gests that large crashes are special. In the following chapters, we shall
show that there are other specific indications associated with these
“outliers,” such as precursory patterns decorating the speculative bubbles
ending in crashes.

FURTHER TESTS

When one makes observations that deviate strikingly from existing belief
(technically called the “null hypothesis”), it is important to keep a cool
head and scrutinize all possible explanations. As Freeman Dyson elo-
quently expressed [116],

The professional duty of a scientist confronted with a new and exciting
theory is to try to prove it wrong. That is the way science works. That is
the way science stays honest. Every new theory has to fight for its exis-
tence against intense and often bitter criticism. Most new theories turn out
to be wrong, and the criticism is absolutely necessary to clear them away
and make room for better theories. The rare theory which survives the
criticism is strengthened and improved by it, and then becomes gradually
incorporated into the growing body of scientific knowledge.

The powerful method of investigation underlying Dyson’s verdict is
the so-called scientific method. In a nutshell, it consists in the following
steps: (1) we observe the data; (2) we invent a tentative description,
called a hypothesis, that is consistent with what we have observed; (3)
we use the hypothesis to make predictions; (4) we test those predictions
by experiments or further observations and modify the hypothesis in
light of our new results; (5) we repeat steps 3 and 4 until there are
only a few or no discrepancies between theory and experiment and/or
observation. When consistency is obtained, the hypothesis becomes a
theory and provides a coherent set of propositions that explain a class of
phenomena. A theory is then a framework within which observations are
explained and predictions are made. In addition, scientists use what is
known as “Occam’s razor,” also known as the law of parsimony, or the
law of simplicity: “When you have two competing theories which make
exactly the same predictions, the one that is simpler is preferable.” There
is a simple, practical reason for this principle: it makes life simpler for
the prediction of the future, as fewer factors have to be determined or
controlled.
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More important is the fact that fewer assumptions and fewer param-
eters make the prediction of new phenomena more robust. Think, for
instance, of the two competing explanations of Descartes and Newton for
the regularities of planetary motions, such as those of Mercury, Venus,
the Earth, Mars, Jupiter, and Uranus orbiting around the sun. According
to Descartes, the motion of the planets could be explained by a com-
plex system of vortices moving the Ether (the hypothetical matter filling
space). In contrast, Newton proposed his famous universal inverse square
distance law for the gravitational attraction between any two massive
bodies. Both explanations are a priori valid and they can both explain
the planetary motions. The difference lies in the fact that Descartes’s
explanation could not be extrapolated to predict new observations, while
Newton’s law led to the prediction of the existence of undetected plan-
ets, such as Neptune. The power of a model or a theory thus lies in its
prediction of phenomena that have not served to construct it. Einstein
put it this way: “A theory is more impressive the greater the simplicity
of its premises, the more different the kinds of things it relates and the
more extended its range of applicability.”

Here is where we stand with respect to the scientific method:

1. We looked at financial data and found it apparently random.

2. We formed the hypothesis that the time evolution of stock market
prices are random walks.

3. We used this hypothesis to make the prediction that the distribution of
drawdowns should be exponential.

4. We tested this prediction by constructing this distribution for the DJTA
and found an apparent discrepancy, especially with respect to the
largest drawdowns.

Before rejecting our initial hypothesis and accepting the idea that
stock market prices are not completely random, we must first verify that
the observation is “statistically significant.” In plain words, this means
that the deviation from the exponential could be the result of the small-
ness of the data set or other factors not identified and unrelated to the
data itself. The apparent deviation from an exponential distribution would
thus not be genuine but an error, an artifact of our measurements, or sim-
ply accidental. In order to try to exclude these traps, we thus need tests
that tell us if the observed deviation is significant and credible. Indeed,
Occam’s razor imposes that we should prefer the simpler hypothesis
of randomness as long as the force of the evidence does not impose a
change of our belief.
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In order to see which one of the two descriptions (random or not
random) is the most accurate, the following statistical analysis of mar-
ket fluctuations is performed. First, we approximate the distribution
of drawdowns for the DJIA up to 15% by an exponential and find a
characteristic drawdown scale of 2%. This characteristic decay constant
means that the probability of observing a drawdown larger than 2% is
about 37%. Following the null hypothesis that the exponential descrip-
tion is correct and extrapolating this description to, for example, the
three largest crashes on the U.S. market in this century (1914, 1929, and
1987), as indicated in Figure 3.4, yields a recurrence time of about fifty
centuries for each single crash. In reality, the three crashes occurred in
less than one century. This result is a first indication that the exponential
model may not apply for the large crashes.

As an additional test, 10,000 so-called synthetic data sets, each cov-
ering a time span close to a century, hence adding up to about 1 million
years, was generated using a standard statistical model used by the finan-
cial industry [46]. We use the model version GARCH(1,1) estimated
from the true index with a student distribution with four degrees of free-
dom. This model includes both nonstationarity of volatilities (the ampli-
tude of price variations) and the (fat tail) nature of the distribution of
the price returns seen in Figure 2.7. Our analysis [209] shows that, in
approximately 1 million years of heavy tail “GARCH-trading,” with a
reset every century, never did three crashes similar to the three largest
observed in the true DJIA occur in a single “GARCH-century.”

Another approach is to use the GARCH model with Student distribu-
tion of the noise with 4 degrees of freedom fitted to the DJIA to con-
struct directly the distribution of drawdowns and compare with real data.
From synthetic price time series generated by the GARCH model, the
distribution of drawdowns is constructed by following exactly the same
procedure as in the analysis of the real time series. Figure 3.7 shows two
dotted lines defined such that 99% of the drawdowns of the synthetic
GARCH with noise Student distribution are within the two lines: there
is thus a 1% probability that a drawdown in a GARCH time series falls
above the upper line or below the lower line. Notice that the distribution
of drawdowns from the synthetic GARCH model is approximately expo-
nential or slightly subexponential for drawdowns up to about 10% and
fits well the empirical drawdown distribution shown as the symbol 4 in
the DJIA. However, the three largest drawdowns are clearly above the
upper line. We conclude that the GARCH dependencies cannot (fully)
account for the dependencies observed in real data, in particular in the
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Fic. 3.7. The two dashed lines are defined such that 99% of the drawdowns of
synthetic GARCH(1,1) with noise Student distribution with 4 degrees of freedom
are within the two lines. The symbols + represent the cumulative distribution of the
drawdowns for the DJIA. The ordinate is in logarithmic scale, while the abscissa
shows the drawdowns; for instance, —0.30 corresponds to a drawdown of —30%.
Reproduced from [399].

special dependence associated with very large drawdowns. This illus-
trates that one of the most used benchmark models in finance fails to
match the data.

This novel piece of evidence, adding upon the previous rejection of the
null hypothesis that reshuffled time series exhibit the same drawdowns
as the real time series (see also below), strengthens the claim that large
drawdowns are outliers.

Of course, these tests do not tell us what the correct model is. They
only show that one of the standard models of the financial industry and
of the academic world (which makes a reasonable null hypothesis of ran-
dom markets) is utterly unable to account for the stylized facts associated
with large financial crashes. It suggests that different mechanisms are
responsible for large crashes. This conclusion justifies the special status
that the media and the public in general attribute to financial crashes.
If the largest drawdowns are outliers, we must consider the possibility
that they may possess a higher degree of predictability than the smaller
market movements.



FINANCIAL CRASHES ARE “OUTLIERS’ 69

This is the subject of the present book. The program in front of us is
to build on this observation that large crashes are very special events in
order to try understanding how and why, and then test for their potential
predictability. Before proceeding, we summarize the evidence for the
existence of outliers in other financial market securities. As outliers will
be shown to be ubiquitous, this will force us to construct specific models
for them.

THE PRESENCE OF OUTLIERS
IS A GENERAL PHENOMENON

The data sets that have been analyzed [220] comprise

1. major world financial indices: the Dow Jones, Standard & Poors, Nas-
daq composite, TSE 300 Composite (Toronto, Canada), All Ordinaries
(Sydney stock exchange, Australia), Strait Times (Singapore stock
exchange), Hang Seng (Hong Kong stock exchange), Nikkei 225
(Tokyo stock exchange, Japan), FTSE 100 (London stock exchange,
U.K.), CAC40 (Paris stock exchange, France), DAX (Frankfurt stock
exchange, Germany), MIBTel (Milan stock exchange, Italy);

2. currencies: U.S. dollar versus German mark (UD$/DM), U.S. dol-
lar versus Japanese yen (UD$/Yen), U.S. dollar versus Swiss franc
(UD$/CHF);

3. gold;

4. the twenty largest companies in the U.S. market in terms of capitaliza-
tion, as well as nine others taken randomly in the list of the fifty largest
companies (Coca Cola, Qualcomm, Appl. Materials, Procter & Gam-
ble, JDS Uniphase, General Motors, Am. Home. Prod., Medtronic, and
Ford).

These different data sets do not have the same time span, largely due to
different life spans, especially for some recent “new technology” com-
panies. This selection of time series is far from exhaustive but is a rea-
sonable sample for our purpose: as we shall see, with the exception of
the index CAC40 (the “French exception™?), all time series exhibit clear
outlier drawdowns. This suggests that outliers constitute a ubiquitous
feature of stock markets, independently of their nature.



Log(Cumulative Number)

Log(Cumulative Number)

N W U1 O N

0.3

70 CHAPTER 3

— Null Hypothesis — NullHypothesis

+ Draw Down + Draw Down

N WA~ U1 O N

Log(Cumulative Number)

1 1 1 1 1 U | | / |

.3 0.25

0.2 0.15 0.1 0.05 0 0.25 0.2 0.15 0.1
Draw Down Draw Down

Fi1G. 3.8. Standard & Poor’s (left) and TSE 300 composite (right). Note the isolated
+ at the bottom-left corner of each panel, indicating the largest drawdawn, clearly
an “outlier.” Its value on the vertical axis is 0 because only one such large event
was observed and the logarithm of 1 is 0. Indeed, recall that this kind of cumulative
distribution counts events from bottom to top, sorting them from the largest to the
smallest when spanning from left to right. Reproduced from [220].

MAIN STOCK MARKET INDICES, CURRENCIES, AND GOLD

The set of Figures 3.8-3.14 tests whether the observations documented
in the previous section for the U.S. markets is specific to it or is a gen-
eral feature of stock market behavior. We have thus analyzed the main
stock market indices of the remaining six G7 countries as well as those
of Australia, Hong Kong, and Singapore and the other important U.S.
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Fi1G. 3.9. All Ordinaries (Australian) (left) and Strait Times (Singapore) (right). Note
again the isolated + at the bottom-left corner of each panel, indicating the largest
drawdawn, clearly an outlier. Reproduced from [220].
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index called the Standard & Poor’s 500 index. The results of this anal-
ysis are shown in Figures 3.8-3.12. Quite remarkably, we find that all
markets except the French market, with the Japanese market being on the
borderline, show the same qualitative behavior exhibiting outliers. The
Paris stock exchange is the only exception as the distribution of draw-
downs is an almost perfect exponential. It may be that the observation
time used for CAC40 is not large enough for an outlier to have occurred.
If we compare with the Milan stock market index MIBTel, we see that
the entire distribution except the single largest drawdown is also close to
a pure exponential. The presence or absence of this outlier thus makes
all the difference. In the case of the Japanese stock market, we note that
it exhibited a general decline from 1990 to early 1999, which is more
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than a third of the data set. The total decline was approximately 60% in
amplitude. This may explain why the evidence is less striking than for
the other indices.

Figures 3.13 and 3.14 show that similar behavior is observed also for
currencies and for gold. Summarizing, the results of the analysis of dif-
ferent stock market indices, the exchange of the U.S. dollar against three
different major currencies as well as the gold market are that outliers are
ubiquitous features of major financial markets [220].

LARGEST U.S. COMPANIES

Let us now extend this analysis to the very largest companies in the
United States in terms of capitalization (market value) [220]. The ranking
is that of Forbes at the beginning of the year 2000. The top twenty have
been chosen, with, in addition, a random sample of other companies,
namely number 25 (Coca Cola), number 30 (Qualcomm), number 35
(Appl. Materials), number 39 (JDS Uniphase), number 46 (Am. Home
Prod.), and number 50 (Medtronic). Three more companies have been
added in order to get longer time series as well as representatives of the
automobile sector. These are Procter & Gamble (number 38), General
Motors (number 43), and Ford (number 64). This represents an unbiased
selection based on objective criteria. We show here only the distribution
of drawdowns for the six first ranks and refer to [220] for access to the
full data set.

From Figures 3.15, 3.16, and 3.17, we can see that the distributions of
the five largest companies (Microsoft, Cisco, General Electric, Intel, and
Exxon-Mobil) clearly exhibit the same features as those for the major
financial markets. Of the remaining 23, for all but America Online and
JDS Uniphase, we find clear outliers but also a variety of different tails
of the distributions. It is interesting to note that the two companies,
America Online and JDS Uniphase, whose distributions did not exhibit
outliers are also the two companies with by far the largest number per
year of drawdowns of amplitude above 15% (close to 4).

Drawups can be similarly defined as runs of positive returns beginning
after a loss and stopping at a loss. The distributions of drawups also
exhibit outliers but less strikingly than the distribution of drawdowns
[220].
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SYNTHESIS

We have found the following facts [211, 217, 220].

1. Approximately 1% to 2% of the largest drawdowns are not at all
explained by the exponential null hypothesis or its extension in terms
of the stretched exponential [253]. Large drawdowns up to three times
larger than expected from the null hypothesis are found to be ubiqui-
tous occurrences of essentially all the times series that we have inves-
tigated, the only noticeable exception being the French index CAC40.
We term these anomalous drawdowns “outliers.”

2. About half of the time series show outliers for the drawups. The
drawups are thus different statistically from the drawdowns and con-
stitute a less conspicuous structure of financial markets.

3. For companies, large drawups of more than 15% occur approximately
twice as often as large drawdowns of similar amplitudes.

4. The bulk (98%) of the drawdowns and drawups are very well fitted by
the exponential null hypothesis (based on the assumption of indepen-
dent price variations) or by a slight generalization called the stretched
exponential model.

The most important result is the demonstration that the very largest
drawdowns are outliers. This is true notwithstanding the fact that the
very largest daily drops are not outliers, except for the exceptional daily
drop on October 29, 1987. Therefore, the anomalously large amplitude
of the drawdowns can only be explained by invoking the emergence of
rare but sudden persistences of successive daily drops, with, in addition,
correlated amplification of the drops. Why such successions of correlated
daily moves occur is a very important question with consequences for
portfolio management and systemic risk, to cite only two applications
that we will investigate in the following chapters.

Systemic risks refer to the risk that a disruption (at a firm or bank, in a
transfer system) causes widespread difficulties at other firms, or in other
market segments. Systemic risk is the risk that such a failure could cause,
at the extreme, a complete breakdown in a financial system due to the
extensive linkages of today’s markets. Such a risk of contagion arising
from a disruption at a firm or in one market is known as systemic risk.
That systemic safety can be threatened by the failure of one small insti-
tution was vividly demonstrated in September 1998 when the U.S. Federal
Reserve Bank organized a rescue of a hedge fund, Long-Term Capital
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Management, because it feared the fund’s collapse would set off havoc in
the financial markets. LTCM had market exposures of over $200 billion,
while its capital base was about $4.8 billion.

See, for instance, http://riskinstitute.ch/134720.htm for more informa-
tion and a summary of countermeasures used to ensure systemic safety.

SYMMETRY-BREAKING ON CRASH AND RALLY DAYS

Lillo and Mantegna [267] have recently convincingly documented
another clear indication that crash and rally days differ significantly
from typical market days in their statistical properties. Specifically, they
investigated the return distributions of an ensemble of stocks simultane-
ously traded on the New York Stock Exchange (NYSE) during market
days of extreme crash or rally in the period from January 1987 to
December 1998. The total number of assets n traded on the NYSE is
rapidly increasing and it ranges from 1,128 in 1987 to 2,788 in 1998.
The total number of data records treated in this analysis thus exceeds
6 million.

Figure 3.18 shows 200 distributions of returns, one for each of 200
trading days, where the ensemble of returns is constructed over the whole
set of stocks traded on the NYSE. A sectional cut at a fixed trading day
retrieves the kind of plot shown in Figure 2.7 (except for the absence
of the folding back of the negative returns performed in Figure 2.7).
Figure 3.18 clearly shows the anomalously large widths and fat tails
on the day of the crash of October 19, 1987, as well as during other
turbulent days.

Lillo and Mantegna [267] documented another remarkable behavior
associated with crashes and rallies, namely that the distortion of the
distributions of returns are not only strong in the tails describing large
moves but also in their center. Specifically, they show that the overall
shape of the distributions is modified on crash and rally days. To show
this, the distributions of the nine trading days with the largest drops and
of the nine trading days with the largest gains of the Standard & Poors
500 given in Table 3.3 are shown in Figures 3.19 and 3.20.

Figure 3.19 shows that on crash days the distribution of returns has a
peak at a negative value and is skewed with an asymmetric and longer
tail towards negative return. Not only are there more drops than gains
among all assets, but the drops are more pronounced. The converse is
true for rally days, as shown in Figure 3.20. Therefore, on crash and
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F1G. 3.18. Contour and surface plot of the ensemble return distribution in a 200-
trading-days time interval centered at October 19, 1987 (corresponding to O in the
abscissa). The probability density scale (z-axis) of the surface plot is logarithmic, so
that a straight decay qualifies exponential distributions. The contour plot at the top is
obtained for equidistant intervals of the logarithmic probability density. The brightest
area of the contour plot corresponds to the most probable value. The symbol R
stands for return. Reproduced from [267].

rally days, not only the scale but also the shape and symmetry properties
of the distribution change.

The change of the shape and of the symmetry properties during the
days of large absolute returns (crashes and rallies) suggests that, on
extreme days, the behavior of the market cannot be statistically described
in the same way as during “normal” periods.

IMPLICATIONS FOR SAFETY REGULATIONS
OF STOCK MARKETS

The realization that large drawdowns and crashes in particular may
result from a run of losses over several successive days is not without
consequences for the regulation of stock markets. Following the market
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TaBLE 3.3
Date S&P 500 return Panel
19 10 1987 —0.2041 3.19a
26 10 1987 —0.0830 3.19b
27 10 1997 —0.0686 3.19¢
31 08 1998 —0.0679 3.19d
08 01 1988 —0.0674 3.19%
13 10 1989 —0.0611 3.19f
16 10 1987 —0.0513 3.19¢
14 04 1988 —0.0435 3.19h
30 11 1987 —0.0416 3.19i
21 10 1987 +0.0908 3.20a
20 10 1987 +0.0524 3.20b
28 10 1997 +0.0511 3.20c
08 09 1998 +0.0509 3.20d
29 10 1987 +0.0493 3.20e
15 10 1998 +0.0418 3.20f
01 09 1998 +0.0383 3.20g
17 01 1991 +0.0373 3.20h
04 01 1988 +0.0360 3.20i

List of the eighteen days of the investigated period (from January
1987 to December 1998) in which the S&P 500 index had the
greatest return in absolute value. The third column indicates the

corresponding panel of the ensemble return distribution shown in

Figures 3.19 and 3.20. Reproduced from [267].

CHAPTER 3

crash of October 1987, in an attempt to head off future one-day stock
market tumbles of historic proportions, the Securities and Exchange
Commission and the three major U.S. stock exchanges agreed to install
so-called circuit breakers. Circuit breakers are designed to gradually
inhibit trading during market declines, first curbing NYSE program
trades and eventually halting all U.S. equity, options, and futures activity.
Similar circuit breakers are operating in the other world stock markets
with different specific definitions.

Circuit breaker values. Effective April 15, 1998, the SEC approved new
circuit breaker trigger levels for one-day declines in the DJIA of 10%,
20%, and 30%. The halt for a 10% decline will be one hour if triggered
before 2:00 p.m. Eastern Standard Time (EST). At or after 2:00 p.m. EST
but before 2:30 p.m. EST, the halt will be for one half-hour. At or after
2:30 p.m. EST, the market will not halt at the 10% level and will continue
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FiG. 3.19. Ensemble return distribution in days of S&P 500 index extreme negative
return occurring in the investigated time period (listed in the first part of Table 3.3).
The ordinate is in logarithmic scale. PDF stands for probability distribution function.
Reproduced from [267].

trading. The halt for a 20% decline will be two hours if triggered before
1:00 p.m. EST. At or after 1:00 p.m. EST but before 2:00 p.m. EST,
the halt will be for one hour. If the 20% trigger value is reached at or
after 2:00 p.m. EST, trading will halt for the remainder of the day. If
the market declines by 30%, at any time, trading will be halted for the
remainder of the day. Previously, the circuit breakers were triggered when
the DJIA declined 350 points (thirty-minute halt) and 550 points (one-
hour halt) from the previous day’s close. The circuit breakers are based
on the average closing price of the Dow for the month preceding the start
of each calendar quarter.

The argument is that the halt triggered by a circuit breaker will pro-
vide time for brokers and dealers to contact their clients when there are
large price movements and to get new instructions or additional margin.
They also limit credit risk and loss of financial confidence by providing
a “time-out” to settle up and to ensure that everyone is solvent. This
inactive period is of further use for investors to pause, evaluate, and
inhibit panic. Finally, circuit breakers expose the illusion of market lig-
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FiG. 3.20. Ensemble return distribution in days of greatest S&P 500 index posi-
tive return occurring in the investigated time period (listed in the second part of
Table 3.3). The ordinate is in logarithmic scale. PDF stands for probability distribu-
tion function. Reproduced from [267].

uidity by spelling out the economic fact of life that markets have limited
capacity to absorb massive unbalanced volumes. They thus force large
investors, such as pension portfolio managers and mutual fund man-
agers, to take even more account of the impact of their “size order,” thus
possibly cushioning large market movements.

However, others argue that a trading halt can increase risk by inducing
trading in anticipation of a trading halt. Another disadvantage is that
they prevent some traders from liquidating their positions, thus creating
market distortion by preventing price discovery [188].

As shown in [30] for the October 1987 crash, countries that had strin-
gent circuit breakers, such as France, Switzerland, and Israel, also had
some of the largest cumulative losses. According to our finding that large
drops are created by transient and rare dependent losses occurring over
several days, circuit breakers should not be considered reliable crash
killers.
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POSITIVE FEEDBACKS

Human behavior is a main factor in how markets
act. Indeed, sometimes markets act quickly, violently
with little warning. ... Ultimately, history tells us
that there will be a correction of some significant
dimension. I have no doubt that, human nature being
what it is, that it is going to happen again and again.
— Alan Greenspan, before the Committee on Banking
and Financial Services, U.S. House of
Representatives, July 24, 1998.

The previous chapter 3 documented convinc-
ingly that essentially all markets exhibit rare but anomalously large runs
of successive daily losses. How can we explain the existence of these
exceptionally large drawdown outliers?

Since it is the actions of investors whose buy and sell decisions move
prices up and down, any deviation from a random walk has ultimately to
be traced back to the behavior of investors. We are particularly interested
in mechanisms that may lead to positive feedbacks on prices, that is, to
the fact that, conditioned on the observation that the market has recently
moved up (respectively, down), this makes it more probable to keep it
moving up (respectively, down), so that a large cumulative move ensues.
The concept of “positive feedbacks” has a long history in economics
and is related to the idea of “increasing returns,” which says that goods
become cheaper the more of them are produced (and the closely related
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idea that some products, like fax machines, become more useful the
more people use them). “Positive feedback” is the opposite of “negative
feedback,” a concept well known, for instance, in population dynamics:
the larger the population of rabbits in a valley, the less grass there is
per rabbit. If the population grows too much, the rabbits will eventu-
ally starve, slowing down their reproduction rate, which thus reduces
their population at a later time. Thus negative feedback means that the
higher the population, the slower the growth rate, leading to a sponta-
neous regulation of the population size; negative feedbacks thus tend to
regulate growth towards an equilibrium. In contrast, positive feedback
asserts that the higher the price or the price return in the recent past, the
higher will be the price growth in the future. Positive feedbacks, when
unchecked, can produce runaways until the deviation from equilibrium is
so large that other effects can be abruptly triggered and lead to ruptures
or crashes. Youssefmir, Huberman, and Hogg [460] have stressed the
importance of positive feedback in a dynamical theory of asset price bub-
bles that exhibits the appearance of bubbles and their subsequent crashes.
The positive feedback leads to speculative trends which may dominate
over fundamental beliefs and which make the system increasingly sus-
ceptible to any exogenous shock, thus eventually precipitating a crash.

There are many mechanisms in the stock market and in the behavior
of investors that may lead to positive feedbacks. Figure 4.1 provides a
humorous account of trader folklore on the many influences and factors
active in the stock market. Some of these influences lead to negative
feedbacks, others to amplification.

We first sketch the evolution of economic thinking in relation to
feedback and self-organization, then describe how positive feedback on
prices can result from hedging of derivatives and from insurance portfo-
lio strategies. We follow by turning to a general mechanism for positive
feedback, which is now known as the “herd” or “crowd” effect, based
on imitation processes. We present a simple model of the best invest-
ment strategy that an investor can develop based on interactions with
and information taken from other investors. We show how the repetition
of these interactions may lead to a remarkable cooperative phenomenon
in which the market can suddenly “solidify” a global opinion, leading to
large price variations.

FEEDBACKS AND SELF-ORGANIZATION IN ECONOMICS

The recognition of the importance of feedbacks to fathom the sheer com-
plexity of economic systems has been at the root of economic thinking
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for a long time. Indeed, the general equilibrium theory is nothing but a
formalization of the idea that “everything in the economy affects every-
thing else” [244]. The historical root and best pictorial synthesis of this
idea is found in the work of 18th-century Scotsman Adam Smith. Smith’s
masterpiece [384], An Inquiry into the Nature and Causes of the Wealth
of Nations, introduced the then-radical notion that selfish, greedy indi-
viduals, if allowed to pursue their interests largely unchecked, would
interact to produce a wealthier society as if guided by an “invisible hand.”
Smith never worked out a proof that this invisible hand existed. Not all
subsequent economists agreed with his optimistic assessment. T. Malthus
thought people would have too many children and overpopulate the
world. Karl Marx thought capitalists would be so greedy they would
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bring down the system. But they all shared Smith’s view of economics
as the study of people trying to maximize their material well being. In
1954, K. Arrow and G. Debreu [16] published an article that in essence
mathematically proved the existence of Adam Smith’s invisible hand.
This “general equilibrium” proof, which relies on a set of very restricted
assumptions of an idealized world, has been a mainstay of graduate-level
economics training ever since.

The most important tool in this analysis was game theory: the study
of situations, like poker or chess games, in which players have to make
their decisions based on guesses about what the other player is going
to do next. Game theory was first adapted to economics in the 1940s
by mathematician John von Neumann (the same von Neumann whose
theoretical insights made the computer possible) and economist O. Mor-
genstern. Since then, the standard economics and social science model
of a human agent is that it is like a general-purpose logic machine. All
decision tasks, regardless of context, constitute optimization problems
subject to external constraints whether from the physical environment or
from the reaction functions of other agents. This central dogma is the
core of economics courses taught in universities and is often found very
difficult to “swallow” by students, many of whom give up, unable to
learn it. This idealization both is convenient for the development of a
coherent theoretical framework and has many rich consequences. How-
ever, it is a poor representation of reality, as most of us are actually not
versed in economic optimization reasoning! The remarkable insight of
Adam Smith is that this does not mean we shall fail to function effec-
tively in social and economic exchanges in life. This is because peo-
ple have natural intuitive mechanisms—mind modules that serve them
well in daily interchanges—enabling them to “read” situations and the
intentions and likely reactions of others without deep, tutored, cogni-
tive analysis. This fact has been established by “experiments” performed
by a large school of economics researchers (the bibliography of which
contains 1500 entries [197]) in the fields of “experimental economics”
[389].

These experimental approaches to economics, started in the mid-
twentieth century, were developed to examine propositions implied by
economic theories of markets. An untested theory is simply a hypothesis,
and science seeks to expand our knowledge of things by a process of test-
ing hypotheses. In contrast, much of traditional economic theory can be
called, appropriately, “ecclesiastical theory”; it is accepted (or rejected)
on the basis of authority, tradition, or opinion about assumptions, rather
than on the basis of having survived a rigorous falsification process
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that can be replicated. Hundreds of experiments on artificial markets
constructed and performed with students from economics classes and
with professionals have shown the crucial importance of repeating
interactions in the presence of unconscious decisions in order to lead
to an apparent rationality in rule-governed problems [390]. In these so-
called continuous double auction experiments, which attempt to mimick
real market situations, subjects have private information on their own
willingness-to-pay or willingness-to-accept schedules which bound the
prices at which each can profitably trade. No subject has information
on market supply and demand. After an experiment, upon interrogation,
the participants deny that they could have maximized their monetary
earnings or that their trading results could be predicted by a theory.
Yet despite these conditions, the subjects tend to converge quickly over
time to the competitive equilibrium. Thus “the most common responses
to the market question were unorganized, unstable, chaotic, and con-
fused. Students were both surprised and amazed at the conclusion of
the experiment when the entrusted student opened a sealed envelope
containing the correctly predicted equilibrium price and quantity” [157].
The fact that economic agents can achieve efficient outcomes that are
not part of their intentions was the key principle formulated by Adam
Smith [384], as we already stressed. Indeed, “in many experimental mar-
kets, poorly informed, error-prone, and uncomprehending human agents
interact through the trading rules to produce social algorithms which
demonstrably approximate the wealth maximizing outcomes traditionally
thought to require complete information and cognitively rational actors”
[391].

In much of the literature on experimental economics [101, 226, 143],
the rational expectations model has been the main benchmark against
which to check the informational efficiency of experimental markets.
The research generally falls into two categories: information dissemina-
tion between fully informed agents (“insiders”) and uninformed agents,
and information aggregation among many partially informed agents. The
former experiments investigate the common intuition that market prices
reflect insider information, hence uninformed traders should be able to
infer the true price from the market. The latter experiments explore the
aggregation of diverse information by partially informed agents, a more
challenging objective because none of the agents possesses full infor-
mation (traders identify the state of the world with certainty only by
pooling their private information through the process of trading). Exper-
iments on markets with both insiders and uninformed traders [333, 334]
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show that equilibrium prices do reveal insider information after sev-
eral trials of the experiments, suggesting that the markets disseminate
information efficiently. The success of the rational expectations model
can be attributed to the fact that traders learn about the equilibrium
price and the state of the world simultaneously from market conditions
[333].

However, these results are not always present if the following condi-
tions are not fulfilled [334, 137]: identical preferences, common knowl-
edge of the dividend structure, and complete contingent claims (i.e.,
existence of a full spectrum of derivative instruments allowing one to
probe the expectation of future risks). These studies provide examples of
the failure of the rational expectations model and suggest that informa-
tion aggregation is a more complicated situation. In particular, it seems
that market efficiency, defined as full information aggregation, depends
on the “complexity” of the market, as measured by market parameters
such as the number of stocks and the number of trading periods in the
market [319]. For instance, overreaction of people to trades that are
uninformative may create self-generated information “mirages,” which
may provide an explanation for the apparent excess volatility of asset
prices [67]. Furthermore, there is evidence from market experiments
about two types of judgment errors: errors in judging exogeneous events
that affect the value of assets and errors in judging variables that are
endogeneously created by market activity, such as prices in future trad-
ing periods. Notwithstanding ideal learning conditions, individual errors
are not eliminated, but are, at best sometimes reduced [65]. Another
idiosyncrasy of human beings highlighted by experiments is the so-called
“disposition effect,” corresponding to the tendency to sell assets that
have gained value and to keep assets that have lost value [446]. Dis-
position effects can be explained by the idea that people value gains
and losses relative to a reference point and have a tendency to seek risk
when faced with possible losses but to avoid risk when a certain gain is
possible. Another important psychological trait is that most people are
overconfident about their own relative abilities and unreasonably opti-
mistic about their futures. This has been shown to influence economic
behavior, such as entry into competitive games or investment in stock
markets[66].

It is in this context that the concept of the “emergence” of a macro-
scopic organization from the repeated action of simple rules at the micro-
scopic level is particularly intriguing. The main question concerns the
qualities of agents that are crucial to shape the properties of this emer-
gence. This question is now at the center of an exciting and vigorous
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body of research aimed at understanding “complex systems” as a result
of self-organization mechanisms [8]. Philip W. Anderson, a condensed-
matter physicist and Nobel laureate in physics at Princeton University,
contended in “More Is Different” [7] an essay published in 1972, that
particle physics and indeed all reductionist approaches have only a lim-
ited ability to explain the world. Reality has a hierarchical structure,
Anderson argued, with each level independent, to some degree, of the
levels above and below. “At each stage, entirely new laws, concepts and
generalizations are necessary, requiring inspiration and creativity to just
as great a degree as in the previous one,” Anderson noted. “Psychology
is not applied biology, nor is biology applied chemistry.”

This “emergence” principle does not imply, however, that the “market”
will always be equivalent to an efficient and global optimization machine.
Actually, empirical economics in particular has taught us that market
forces may lead to plenty of imperfections, problems, and paradoxes,
depending on many different ingredients that are indeed present in real-
life situations.

1. Trading rules of market institutions seem to matter significantly in the
realization of efficient markets. Inadequate methods of pricing may
lead to a slow and inefficient convergence to the equilibrium price or
event to a divergence from it.

2. Providing subjects with complete information, far from improving mar-
ket competition, may tend to make it worse. Indeed, when people have
complete information, they can identify more self-interested outcomes
than competitive equilibria and use punishing strategies in an attempt
to achieve them, which delays reaching equilibrium.

3. There is no assurance that a public announcement will yield common
expectations among the players, since each person may still be uncer-
tain about how others will use the information.

4. According to survey studies reported by Kahneman, Knetsch, and
Thaler [227], people indicate that it is unfair for firms to raise prices
and increase profits in response to certain changes in the environment
that are not justified by an increase in costs. Thus, respondents report
that it is “unfair” for firms to raise the price of snow shovels after
a snowstorm or to raise the price of plywood after a hurricane. In
these circumstances, economic theory predicts shortages, an increase
in prices toward the new market clearing levels, and, eventually, an
increase in output. In other words, the increase of price is the equi-
librium solution associated with the new supply—demand relationship,
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but this is considered unfair by people. How this perception impacts
the real dynamics of the price and the behavior of firms and buyers
to give rise to efficient or inefficient markets remains a subject of
research.

5. Prices in experimental asset markets tend to bubble and then crash
to their dividend value at the end of the asset’s useful life [335].
The introduction of a futures market, that allows participants to obtain
information on future share prices, is found to reduce the bubbles in
experiments.

6. The experience of traders is paramount to the appearance of bubbles
and crashes in these synthetic experimental markets. Providing full
information on the future dividend flow, which should give full infor-
mation on the equilibrium price of the corresponding asset, had little
effect on the character of bubbles with inexperienced traders [335].
Repeating the market game several times, the bubbles tend to decrease
in amplitude.

7. The phenomenon of “herding,” discussed at length in the remainder of
this chapter, can also be considered an example of market failure, as
it leads to important deviations from “fundamental” or “equilibrium”
prices.

This research has fertilized many novel approaches that are work-
ing out ways in which rational behavior could lead to less-than-optimal
market outcomes. Another important step has been the introduction of
so-called “information asymmetry,” which describes situations in which
different parties to a transaction possess different amounts of informa-
tion. Such “asymmetric information,” the fact that people are not equal
with respect to the quality and quantity of information they use to make
decisions, blossomed in the seventies as a way to explain the behavior of
financial markets, which are indeed extremely susceptible to information
difficulties.

The present situation is that economics has moved away from the
dead certainties of the past into a much more interesting universe of
research possibilities including, as we shall see, imperfection, bounded
rationalities, behaviors, and even psychology. The mathematical models
that had come to form the basis of academic economics are shifting from
general equilibrium, in which everything would work out for the best,
to multiple equilibriums and out-of-equilibrium, in which it might not.
The resulting encompassing concept is that the economy and the stock
market are self-organizing systems.
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HEDGING DERIVATIVES, INSURANCE PORTFOLIOS,
AND RATIONAL PANICS

Consider, for instance, a so-called call or buy option, which is a finan-
cial instrument issued by, say, a bank on an underlying stock such as
IBM. An option gives the buyer the right, but not the obligation, to buy
an IBM share in the future at a predefined price x, (usually called the
“strike”). It is clear that, if the IBM price goes up above this predefined
price x_, the option acquires a value equal to the difference between the
IBM price and the predefined price x_, since the owner of the option
can always buy at x, from the bank and sell immediately at market
value, pocketing the difference. In order to be able to provide the IBM
stock to the option holder, the bank has to buy the stock at the market
value, if it has not taken the precautionary measure of holding some
stock in reserve. This means that the bank has a potential maximum
loss equal to the potential gain of the option holder. But the bank is
not weaponless in this situation, as it can cover its risks against such a
possibility by buying the stock in advance at a cheaper price, a proce-
dure called “hedging.” Such hedging strategy leads to positive feedback:
if the price increases, the option issuer should buy more of the under-
lying stock to hedge its position and prepare to deliver to the option
buyer. Buying the stock obviously provides a driving force for further
increase of the price, hence the positive feedback. This is only one exam-
ple among many cases associated with derivative products in financial
markets.

A related phenomenon is the increase in market volatility of asset
prices that have been observed and analyzed in recent years (see, for
instance, Table 4.1 for a striking illustration) and its cause has often been
attributed to the popularity of hedging strategies for derivative securities.
It can indeed be shown that optimal hedging strategies (using improve-
ments of the famous Black and Scholes methodology) not only pro-
vide a positive feedback on prices, they also increase the price volatility
[381]. As Miller [298] noted, the view is widespread and is expressed
almost daily in the financial press: stock market volatility has been ris-
ing in the last decade mainly due to the introduction of low-cost spec-
ulative vehicles such as stock index futures and options. It is, how-
ever, naive to attribute the increase in volatility only to this origin. As
we shall see, there are many other causes, and disentangling them is
difficult.
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TABLE 4.1
Date High — low Close(t) — close(t — 1)
27 Oct 97 8% —8%
28 Oct 97 12% +6%
31 Aug 98 12% —11%
1 Sept 98 6% +8%
4 Apr 00 15% —1%
12 Apr 00 9% —8%
14 Apr 00 12% —11%
17 Apr 00 12% +9%
27 Apr 00 8% +5%
23 May 00 9% —7%
24 May 00 9% +5%
13 Oct 00 8% +8%

Daily highs minus lows larger than 5% for the Nasdaq composite index
over the time period from 1991 to October 2000. Out of the twelve moves
of more than 5% since 1991, none occurred before 1997 and eight have
occurred in the time interval from April to October 2000! Notice that the
variation of the close close(t) — close(t — 1) from one day to the next
day is not always a good signature of the excitement of the day, as can
be seen for instance on April 4.

A second mechanism is provided by investment strategies with an
“insurance portfolio.” Indeed, the initial assessment of the origins of
the October 1987 crash pointed to the then-popular hedging strategies
deriving from portfolio insurance models. In a nutshell, such strategies
consist of selling when price decreases below a threshold (stop loss)
and in buying when price increases. It is clear that by increasing the
volume of sell orders following a price decrease, this may lead to further
price decreases, possibly cascading in a downward spiral. The 1988
Brady Commission appointed to investigate the cause of the 1987 crash
has indeed named portfolio insurance as a major factor contributing to
the downward pressure on stock prices that led to the crash of October
1987. Recent works, for instance, Barlevy and Veronesi [28], show that
uninformed traders can behave as insurance portfolios and precipitate
a price crash because, as price declines, they reasonably surmise that
better informed traders could have received negative information which
leads them to reduce their own demand for assets, driving the price of
stocks even lower.
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“HERD” BEHAVIOR AND “CROWD” EFFECT
BEHAVIORAL ECcONOMICS

In debates and research on the social sciences, the sciences dealing with
human societies, it is customary to oppose two approaches, the first striv-
ing for objectivism, the second being more interpretative.

e The first approach attempts to view “social facts” as “material things,”
looking for examples where human groups appear to behave as much
as possible as inanimate matter, such as in crowds, queues, traffic jams,
competition, attraction, perturbations, and markets.

e In contrast, the second approach attempts as much as possible to dis-
tinguish the behavior of social agents from that of inanimate matter.
In this framework, it is believed that human endowments such as con-
science, reflection, intention, morality, and history forbid the use and
transfer of quantitative methods developed in the physical, material,
and more generally natural sciences to the humanities.

In recent economic and finance research, there is a growing interest in
marrying the two viewpoints, that is, in incorporating ideas from social
sciences to account for the fact that markets reflect the thoughts, emo-
tions, and actions of real people as opposed to the idealized economic
investor who underlies the efficient market and random walk hypotheses.
This was captured by the now-famous pronouncement of Keynes [235]
that most investors’ decisions “can only be taken as a result of animal
spirits—of a spontaneous urge to action rather than inaction, and not
the outcome of a weighed average of benefits multiplied by the quan-
titative probabilities” (see the section entitled “Is Prediction Possible?”
in chapter 1 and the section entitled “Prices Are Unpredictable, or Are
They?” in chapter 2). A real investor may intend to be rational and may
try to optimize his or her actions, but that rationality tends to be hampered
by cognitive biases, emotional quirks, and social influences. “Behavioral
finance” [424, 372, 376, 163, 104] is a growing research field that uses
psychology, sociology, and other behavioral theories to explain the behav-
ior of investors and money managers. The behavior of financial markets is
thought to result from varying attitudes toward risk, the heterogeneity in
the framing of information, cognitive errors, self-control and lack thereof,
regret in financial decision making, and the influence of mass psychology.
Assumptions about the frailty of human rationality and the acceptance of
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such drives as fear and greed are underlying the recipes developed over
decades by so-called technical analysts.

Prof. Thaler, now at the University of Chicago, was one of the earliest
and strongest proponents of behavioral economics [424] and has made a
career developing a taxonomy of anomalies that embarrass the standard
view from neoclassical economics that markets are efficient and people
are rational. According to accepted economic theory, for instance, a per-
son is always better off with more rather than fewer choices. One day,
Thaler noticed that a few of his supposedly rational colleagues who were
over at his house were unable to stop themselves from gorging on some
cashew nuts he had put out. Why, then, did Thaler’s colleagues thank
him for removing the tempting cashews from his living room? Another
case-in-point was when a friend admitted to Thaler that, although he
mowed his own lawn to save $10, he would never agree to cut the lawn
next door in return for the same $10 or even more. According to the
concept of “opportunity cost,” foregoing a gain of $10 to mow a neigh-
bor’s lawn “costs” just as much as paying somebody else to mow your
own. According to theory, you prefer either the extra time or the extra
money—it cannot be both. Still another example reported in [272] is
when Thaler and another friend decided to skip a basketball game in
Rochester because of a swirling snowstorm. His friend remarked that if
they had bought the tickets already, they would have gone. The problem
refers to “sunk costs.” Similarly, there is no sense going to the health club
just because you have paid your dues. After all, the money is already
paid: sunk. And yet, Thaler observed that we do, in general. People, in
short, do not behave like rational economics would like them to. Even
economics professors are not as rational as the people in their mod-
els. For instance, a bottle of wine that sells for $50 might seem far too
expensive to buy for a casual dinner at home. But if you already owned
that bottle of wine, having purchased it earlier for far less, you would
be more likely to uncork it for the same meal. To an economist, this
makes no sense, but Thaler culled that anecdote from Richard Rosett, a
prominent neoclassicist [272]. The British economist K. Binmore once
proclaimed at a seminar that people evolve toward rationality by learning
from mistakes. Thaler retorted that people may learn how to shop for
groceries sensibly because they do it every week, but the big decisions—
marriage, career, retirement—do not come up very often. So Binmore’s
highbrow theories, he concluded, were good for “buying milk” [272].
In his doctoral thesis on the economic “worth” of a human life, Thaler
proposed quantifying it by measuring the difference in pay between life-
threatening jobs and safer lines of work. He came up with a figure of
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$200 a year (in 1967 dollars) for each 1-in-1,000 chance of dying. When
he asked friends about it, most insisted that they would not accept a
1-in-1,000 mortality risk for anything less than a million dollars. Para-
doxically, the same friends said they would not be willing to forgo any
income to eliminate the risks that their jobs already entailed. Thaler con-
cluded that rather than rationally pricing mortality, people had a cognitive
disconnect; they put a premium on new risks and casually discounted
familiar ones [272]. In experiments designed to test his ideas, Thaler
found that subjects would usually agree to pay more for a drink if they
were told that the beer is being purchased from an exclusive hotel rather
than from a rundown grocery. It strikes them as unfair to pay the same.
This violates the law-of-one-price that one drink is worth the same as
another, and it suggests that people care as much about being treated
fairly as they do about the actual value of what they are paying for
[227, 228]. An important discovery, extending the framing principle of
Kahneman and Tversky, was “mental accounting” [423, 373]. “Framing”
says that the positioning of choices prejudices the outcome, an issue that
received a lot of publicity in the 2000 U.S. presidential election. “Men-
tal accounting” says that people draw their own frames, and that where
they place the boundaries subtly affects their decisions. For instance,
most people sort their money into accounts like “current income” and
“savings” and justify different expenditures from each [425]. Applied
to the stock market, Thaler noticed that some behavioral patterns like
“categorization” may provide arbitrage opportunities: for instance, when
Lucent Technologies was riding high, people categorized it as a “good
stock” and mentally coded news about it in a favorable way. Later, when
Lucent had become a “bad stock,” similar news was interpreted more
gloomily. Another anomaly, called “hyperbolic discounting” [254, 255],
refers to preference reversals: when people expect money but have not
yet received it, they are capable of planning, quite rationally, how much
of it to spend immediately and how much to save. This is in agree-
ment with economics theory, which argues that for a modest incentive,
people are willing to save and put off spending. But when the money
actually arrives, willpower breaks down and the money is often spent
right away. In other words, when sacrifices are distant, patience predom-
inates: I want/plan/intend to start exercising next month. But next month,
the designated sacrifice is often avoided. Such preferences, neglected
by neoclassical economics, have important implications, in particular for
investors’ life-cycle savings decisions.

One of the most robust findings in the psychology of judgment is that
people are overconfident (see the review [104] and references therein).
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A significant manifestation in the context of herding is that people over-
estimate the reliability of their knowledge and of their abilities: one
famous finding is that 90% of the automobile drivers in Sweden consider
themselves “above average” [417], while of course by definition (for a
symmetric distribution) 50% are below average and 50% are above aver-
age! Most people also consider themselves above average in their ability
to get along with others. Such overconfidence is enhanced in domains
where people have self-declared expertise, holding their actual predic-
tive ability comparable [190]. This seems to have important implications
for understanding managers’ decisions concerning corporate growth and
external acquisition and why most funds are actively managed [104].
Overconfidence implies that managers all think they can pick winners.

HERDING

There is growing empirical evidence of the existence of herd or “crowd”
behavior in speculative markets as carefully documented in the recent
book of Shiller [375] and references therein. Herd behavior is often
said to occur when many people take the same action, because some
mimic the actions of others. The term “herd” obviously refers to sim-
ilar behavior observed in animal groups. Other terms such as “flocks”
or “schools” describe the collective coherent motion of large numbers
of self-propelled organisms, such as migrating birds and gnus, lemmings
and ants [426]. In recent years, physicists have shown that much of the
observed herd behavior in animals can be understood from the action of
simple laws of interactions between animals. With respect to humans,
there is a long history of analogies between human groups and organized
matter [64, 305]. More recently, extreme crowd motions such as in panic
situations have been remarkably well quantified by models that treat the
crowd as a collection of individuals interacting as a granular medium
with friction, like the familiar sand of beaches [191].

Herding has been linked to many economic activities, such as invest-
ment recommendations [364, 171], price behavior of IPOs [450], fads
and customs [39], earnings forecasts [427], corporate conservatism [463],
and delegated portfolio management [290]. Researchers are investigat-
ing the incentives investment analysts face when deciding whether to
herd and, in particular, whether economic conditions and agents’ indi-
vidual characteristics affect their likelihood of herding. Although herding
behavior appears inefficient from a social standpoint, it can be ratio-
nal from the perspective of managers who are concerned about their
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reputations in the labor market. Such behavior can be rational and may
occur as an information cascade [450, 107, 39], a situation in which
every subsequent actor, based on the observations of others, makes the
same choice independent of his or her private signal. Herding among
investment newsletters, for instance, is found to decrease with the pre-
cision of private information [171]: the less information you have, the
stronger is your incentive to follow the consensus.

Research on herding in finance can be subdivided in the following
non-mutually exclusive manner [107, 171].

1. Informational cascades occur when individuals choose to ignore or
downplay their private information and instead jump on the bandwagon
by mimicking the actions of individuals who acted previously. Informa-
tional cascades occur when the existing aggregate information becomes
so overwhelming that an individual’s single piece of private information
is not strong enough to reverse the decision of the crowd. Therefore, the
individual chooses to mimic the action of the crowd, rather than act on his
private information. If this scenario holds for one individual, then it likely
also holds for anyone acting after this person. This domino-like effect is
often referred to as a cascade. The two crucial ingredients for an infor-
mational cascade to develop are: (i) sequential decisions with subsequent
actors observing decisions (not information) of previous actors; and (ii) a
limited action space.

2. Reputational herding, like cascades, takes place when an agent
chooses to ignore his or her private information and mimic the action of
another agent who has acted previously. However, reputational herding
models have an additional layer of mimicking, resulting from positive
reputational properties that can be obtained by acting as part of a group
or choosing a certain project. Evidence has been found that a forecaster’s
age is positively related to the absolute first difference between his
forecast and the group mean. This has been interpreted as evidence that
as a forecaster ages, evaluators develop tighter prior beliefs about the
forecaster’s ability, and hence the forecaster has less incentive to herd
with the group. On the other hand, the incentive for a second-mover to
discard his private information and instead mimick the market leader
increases with his initial reputation, as he strives to protect his current
status and level of pay [171].

3. Investigative herding occurs when an analyst chooses to investigate
a piece of information he or she believes others also will examine. The
analyst would like to be the first to discover the information but can only
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profit from an investment if other investors follow suit and push the price
of the asset in the direction anticipated by the first analyst. Otherwise, the
first analyst may be stuck holding an asset that he or she cannot profitably
sell.

4. Empirical herding refers to observations by many researchers of
“herding” without reference to a specific model or explanation. There
is indeed evidence of herding and clustering among pension funds,
mutual funds, and institutional investors when a disproportionate share
of investors engage in buying, or at other times selling, the same stock.
These works suggest that clustering can result from momentum-following,
also called “positive feedback investment,” for example, buying past
winners or perhaps repeating the predominant buy or sell pattern from
the previous period.

There are many reported cases of herding. One of the most dramatic
and clearest in recent times is the observation by G. Huberman and
T. Regev [204] of a contagious speculation associated with a nonevent
in the following sense. A Sunday New York Times article on the potential
development of a new cancer-curing drug caused the biotech company
EntreMed’s stock to rise from 12 at the Friday, May 1, 1998 close to
open at 85 on Monday, May 4, close near 52 on the same day, and remain
above 39 in the three following weeks. The enthusiasm spilled over to
other biotechnology stocks. It turns out that the potential breakthrough
in cancer research had already been reported in one of the leading scien-
tific journals, Nature, and in various popular newspapers (including the
Times) more than five months earlier. At that time, market reactions were
essentially nil. Thus the enthusiastic public attention induced a long-
term rise in share prices, even though no genuinely new information had
been presented. The very prominent and exceptionally optimistic Sunday
New York Times article of May 3, 1998 led to a rush on EntreMed’s
stock and other biotechnology companies’ stocks, which is reminiscent
of similar rushes leading to bubbles in historical times (see chapter 1). It
is to be expected that information technology, the Internet, and biotech-
nology are among the leading new frontiers on which sensational stories
will lead to enthusiasm, contagion, herding, and speculative bubbles.

EmPIRICAL EVIDENCE OF FINANCIAL ANALYSTS’ HERDING

A recently published empirical work by Ivo Welch [451] shed new
light on the important question of whether herding is more rational or
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“irrational.” He considered the buy and sell recommendations of secu-
rity analysts and asked whether previous recommendations as well as
the prevailing consensus influence the recommendations of the follow-
ing analyses. This is one of the rare studies where a scientific approach
can be developed to gain insight into this delicate question. Welch stud-
ied more than 50,000 stock recommendations made between 1989 and
1994 by hundreds of U.S. security analysts from the Zacks database,
which is a commercially compiled database of analysts’recommendation,
used, for instance, by The Wall Street Journal to publish regular perfor-
mance reviews of major brokerage houses. To formulate the problem in
a langage suitable for a rigorous statistical analysis, the recommenda-
tions are divided into five classes: 1: “strong buy,” 2: “buy,” 3: “hold,”
4: “sell,” 5: “strong sell.” From this numerical coding of the recommen-
dation, Welch started by constructing Table 4.2 or “transition matrix,” in
which an entry denoted N,_, ; represents the number of recommendations
Jj, given that the previous recommendation was i. Thus, for example,
N,_, = 92 is the number of recommendations “sell” following the pre-
vious recommendation “strong buy”’; N, ,, = 1,826 is the number of
recommendations “hold” following the previous recommendation “sell,”
and so on. As can be seen from the table, the transition matrix is highly
irregular: the numbers of recommendations vary strongly from one rec-
ommendation to another. The total number of recommendations (of any
direction) starting from a previous “strong buy” is 14,682, compared to
only 1,584 recommendations starting from a previous “strong sell.” It
is thus clear that there is a rather strong bias toward “buy” and “strong
buy”’: the total number of such recommendations is 25,784 compared to
only 4,951 “sell” and “strong sell” recommendations, that is, more than
five times more “buy” and “strong buy” recommendations than “sell”
and “strong sell” recommendations.

To test for herding, Welch first defined the global consensus as T, =
Z?zlj total(j)/N = [1 x total(1) + 2 x total(2) 4+ 3 x total(3)+ 4 x
total(4) + 5 x total(5)]/N, which gives a value close to 2.5, where
total(j) is the total number of recommendation of type j following any
previous recommendation as defined in Table 4.2. Since the value 2.5 is
less than 3, which would be the expected result in the absence of bias,
this confirms the bias toward “buy” positions corresponding to smaller
coding numbers (1 and 2). The second step is to extract the subset of
recommendations on a given day ¢ and recalculate the transition matrix
for this day. The entries will be smaller, but what is important are the
proportions (i.e., normalized by total(i)), which will probably be differ-
ent from those shown in Table 4.2. To quantify how different, one again
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TABLE 4.2
From | (i) to — (j) 1 2 3 4 5 total(i)
1 : Strong buy 8,190 2,234 4,012 92 154 14,682
2 : Buy 2,323 4,539 3,918 262 60 11,102
3 : Hold 3,622 3,510 13,043 1,816 749 22,740
4 : Sell 115 279 1,826 772 375 3,367
5 : Strong sell 115 39 678 345 407 1,584

Total(j) 14,365 10,601 23,477 3287 1,745 53475

The “transition matrix” giving the number of recommendations j, given that the previous recom-
mendation was i, where the numbers i and j are taken from five values defined by classifying the
recommendations into five classes: 1: strong buy, 2: buy, 3: hold, 4: sell, 5: strong sell. The total
number of recommendations used in the construction of this table is N = 53,475. Reproduced from
[451].

computes the consensus 7'(¢) for this day ¢. If T(¢) = T,, this day is like
any other day and there is no special difference from the point of view
of the analysts. More interesting are the days when 7'(7) is significantly
different from 7;,. The question is, then, What is the origin of this differ-
ence? The answer is given by calculating how this difference depends on
different factors, such as the recommendations made the previous day or
the prevailing consensus. Welch introduced for this a “herding” param-
eter measuring the tendency to herd, that is, when recommendations are
influenced by the prevailing consensus. The first result is that analysts
do indeed bias their recommendations towards the prevailing consensus.
He then measures the probability of making one of the five recommen-
dations when herding is absent and compares it to that when herding is
present: a “hold” recommendation, for instance, occurs 42% of the time
when herding is absent and 47% when it is present. While this impact
appears small, any statistically significant change in behavior indicates
herding, given that analysts rarely agree on a stock pick when acting in
isolation, and in a sense it is their job to disagree.

What is the cause of this herding? If all analysts receive new infor-
mation about a stock at the same time and interpret it in the same
way, rational herding could ensue. Alternatively, analysts could simply
be mimicking their colleagues blindly, even when no new fundamen-
tal information is released, leading to “irrational” herding. In order to
distinguish these two hypotheses, Welch measured the propensity to fol-
low a consensus when the herd proves to be correct. The idea is that if
herding is rationally based on fundamental information, it should lead to
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better recommendations, on average, than when it is irrationally based on
mimicking behavior. The data shows that “analysts are more inclined to
follow the prevailing consensus when it later on turns out to be wrong.”
Since there does not seem to be any informational advantage to consen-
sus herding, one can conclude that it is of the irrational kind. It also
constitutes evidence that analysts follow the prevailing consensus based
on limited information, if any.

However, as is often the case in this difficult subject, there are alterna-
tive explanations. The fact that the prevailing consensus among analysts
turns out to be wrong can also be interpreted as the fact that investors,
who are not the same population as analysts, do not follow the rec-
ommendations of the latter! This situation is then similar to a natural
system having its own dynamics, which are independent of the existence
of observers or analysts trying to forecast, its dynamics being created by
the aggregate investment actions of the investors.

Another important fact outlined by the research of Welch is that the
strength of herding is different in bull and bear markets. Analysts tend to
follow the consensus more strongly (1) in up-markets and (2) following
recent revisions in down-markets. Behavior (1) tends to create “bubbles”:
price inflations deconnected from fundamental values. Behavior (2) sug-
gests that revision from an optimistic to a pessimistic outlook can be
amplified by herding, a mechanism that can amplify losses and may lead
to brutal drops and crashes.

FORCES OF IMITATION
IT Is OPTIMAL TO IMITATE WHEN LACKING INFORMATION

All the traders in the world are organized into a network of family,
friends, colleagues, contacts, and others who are sources of opinion, and
influence each other locally through this network [48]. We call “neigh-
bors” of agent Anne on this worldwide graph the set of people in direct
contact with Anne. Other sources of influence also involve newspa-
pers, Web sites, TV stations, and similar media. Specifically, if Anne is
directly connected with k “neighbors” in the worldwide graph of con-
nections, then there are only two forces that influence Anne’s opinion:
(a) the opinions of these k people together with the influence of the
media; and (b) an idiosyncratic signal that she alone receives (or gen-
erates; see Figure 4.2). According to the concept of herding and imita-
tion, the assumption is that agents tend to imiftate the opinions of their



100 CHAPTER 4

Signall

Signal

Y
>
-}

Result

Signal

SignalT

FiG. 4.2. A message path running through a block of agents. The signals are the
idiosyncratic noise received at the previous time, which then combines with the state
of each agent. Each agent sends a signal to neighbors. A given agent then makes
a decision based on the signal of her neighbors and her own private information
(reproduced from [383]).

“neighbors,” not contradict them. It is easy to see that force (a) will tend
to create order, while force (b) will tend to create disorder, or in other
words, heterogeneity. The main story here is the fight between order
and disorder, and the question we are now going to investigate is, What
behavior can result from this fight? Can the system go through unstable
regimes, such as crashes? Are crashes predictable? We show that the sci-
ence of self-organizing systems (sometimes also referred to as “complex
systems”) bears very significantly on these questions: the stock market
and the web of traders’ connections can be understood in large part from
the science of critical phenomena (in a sense that we are going to exam-
ine in some depth later in this chapter and in chapter 5), from which
important consequences can be derived.

To make progress, we formalize the problem a bit and consider a net-
work of investors: each one can be named by an integeri =1, ... , [, and
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N (i) denotes the set of the agents who are directly connected to agent
i according to the worldwide graph of acquaintances. If we isolate one
trader, Anne, N (Anne) is the number of traders in direct contact with her,
who can exchange direct information with her and exert a direct influence
on her. For simplicity, we assume that any investor such as Anne can
be in only one of several possible states. In the simplest version, we
can consider only two possible states: s,,,, = —1 or s,,,. = +1. We
could interpret these states as “buy” and “sell,” “bullish” and “bearish,”
“optimistic” and “pessimistic.” Now, the section entitled “Explanation of
the Imitation Strategy” shows that, based only on the information of the
actions s,(¢ — 1) performed yesterday (at time t — 1) by her N(Anne)
“neighbors,” Anne maximizes her return by having taken yesterday the
decision s,,,.(f — 1) given by the sign of the sum of the actions of all her
“neighbors.” In other words, the optimal decision of Anne, based on the
local polling of her “neighbors,” who she hopes represents a sufficiently
faithful representation of the market mood, is to imitate the majority
of her neighbors. This is, of course, open to some possible deviations
when she decides to follow her own idiosyncratic “intuition” rather than
being influenced by her “neighbors.” Such an idiosyncratic move can be
captured in this model by a stochastic component independent of the
decisions of the neighbors or of any other agent. Intuitively, the reason
why it is generally optimal for Anne to follow the opinion of the major-
ity is simply because prices move in that direction, forced by the law
of supply and demand. Later in this chapter and in chapter 5, we shall
show that this apparently innocuous evolution law produces remarkable
self-organizing patterns.

Explanation of the imitation strategy. Consider N traders in a network,
whose links represent the communication channels through which the
traders exchange information. The graph describes the chain of interme-
diate acquaintances between any two people in the world. We denote by
N (i) the number of traders directly connected to a given trader i on the
graph. The traders buy or sell one asset at price p(t) which evolves as a
function of time assumed to be discrete and measured in units of the time
step At. In the simplest version of the model, each agent can either buy or
sell only one unit of the asset. This is quantified by the buy state s, = +1
or the sell state s, = —1. Each agent can trade at time ¢ — 1 at the price
p(t — 1) based on all previous information, including that at r — 1. The
asset price variation is taken simply proportional to the aggregate sum
Zf\; ,8;:(t — 1) of all traders’ actions: indeed, if this sum is zero, there are
as many buyers as there are sellers and the price does not change since
there is a perfect balance between supply and demand. If, on the other
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hand, the sum is positive, there are more buy orders than sell orders and
the price has to increase to balance the supply and the demand, as the
asset is too rare to satisfy all the demand. There are many other influences
impacting the price change from one day to the next, and this can usually
be accounted for in a simple way by adding a stochastic component to the
price variation. This term alone would give the usual log-normal random
walk process [92], while the balance between supply and demand together
with imitation leads to some organization, as we show below.

At time f — 1, just when the price p(t — 1) has been announced, the
trader i defines her strategy s,(¢ — 1) that she will hold from 7 — 1 to ¢, thus
realizing the profit (or loss) equal to the price difference (p(7) — p(t — 1))
times her position s;(z — 1). To define her optimal strategy s;(t — 1), the
trader should calculate her expected profit P, given the past information
and her position, and then choose s;(r — 1) such that P, is maximum.
Since the price moves with the general opinion le_v: , 8;(t — 1), the best
strategy is to buy if it is positive and sell if it is negative. The diffi-
culty is that a given trader cannot poll the positions s; that will take all
other traders, which will determine the price drift according to the balance
between supply and demand. The next best thing that trader i can do is to
poll her N (i) “neighbors” and construct her prediction for the price drift
from this information. The trader needs additional information, namely the
a priori probability P, and P_ for each trader to buy or sell. The probabil-
ities P, and P_ are the only information that she can use for all the traders
that she does not poll directly. From this, she can form her expectation of
the price change. The simplest case corresponds to a market without drift
where P, = P_ =1/2.

Based on the previously stated rule that the price variation is propor-
tional to the sum of actions of traders, the best guess of trader i is that
the future price change will be proportional to the sum of the actions of
her neighbors who she has been able to poll, hoping that this provides a
sufficiently reliable sample of the total population. Traders are indeed con-
stantly sharing information, calling each other to “take the temperature,”
effectively polling each other before taking actions. It is then clear that
the strategy that maximizes her expected profit is such that her position is
of the sign given by the sum of the actions of all her “neighbors.” This is
exactly the meaning of the following expression:

s;(t—1)= sign(K s+ s,.) (6)

JEN;
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such that this position s,(# — 1) gives her the maximum payoff based on
her best prediction of the price variation p(¢) — p(t — 1) from yesterday
to today. The function sign(x) is defined by being equal to +1 (to —1) for
positive (negative) argument x, K is a positive constant of proportionality
between the price change and the aggregate buy/sell orders. It is inversely
proportional to the “market depth”: the larger the market, the smaller is
the relative impact of a given unbalance between buy and sell orders,
hence the smaller is the price change. ¢, is a noise and N (7) is the number
of neighbors with whom trader i interacts significantly. In simple terms,
this law (6) states that the best investment decision for a given trader is to
take that of the majority of her neighbors, up to some uncertainty (noise),
capturing the possibility that the majority of her neighbors might give an
incorrect prediction of the behavior of the total market.

Expression (6) can be thought of as a mathematical formulation of
Keynes’s beauty contest. Keynes [235] argued that not only are stock
prices determined by the firm’s fundamental value, but, in addition, mass
psychology and investors’ expectations influence financial markets sig-
nificantly. It was his opinion that professional investors prefer to devote
their energy, not to estimating fundamental values but rather, to analyzing
how the crowd of investors is likely to behave in the future. As a result,
he said, most persons are largely concerned not with making superior
long-term forecasts of the probable yield of an investment over its whole
life, but with foreseeing changes in the conventional basis of valuation a
short time ahead of the general public. Keynes used his famous beauty
contest as a parable for stock markets. In order to predict the winner of
a beauty contest, the ability to recognize objective beauty is not nearly
as important as the ability to predict others’ recognition of beauty. In
Keynes’s view, the optimal strategy is not to pick those faces the player
thinks are the prettiest, but those the other players are likely to think the
average opinion will be, or those the other players will think the others
will think the average opinion will be, or even further along this iterative
loop. Expression (6) precisely captures this concept: the opinion s, at
time ¢ of an agent i is a function of all the opinions of the other “neigh-
boring” agents at the previous time ¢ — 1, which themselves depend on
the opinion of the agent i at time ¢ — 2, and so on. In the stationary equi-
librium situation in which all agents finally form an opinion after many
such iterative feedbacks have had time to develop, the solution of (6) is
precisely the one taking into account all the opinions in a completely
self-consistent way compatible with the infinitely iterative loop.
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MIMETIC CONTAGION AND THE URN MODELS

Orléan [323]-[328] has captured the paradox of combining rational and
imitative behavior under the name “mimetic rationality” (rationalité
mimétique). He has developed models of mimetic contagion of investors
in the stock markets that are based on irreversible processes of opinion
forming. In the simplest version, called the Urn model, which has a
long history in the mathematical literature dating from Polya [269], let
us assume that, at some time, there are M white balls and N black
balls in an urn. Then, we draw one ball at random from the urn. Here,
“random” means that any ball has the same probability 1/(M + N) to
be chosen. Then, we return the winner as well as another additional ball
of the same color to the set of balls from which it was drawn. Thus,
after this experiment, if white is the winner, there will be M + 1 white
balls in the white set and N black balls in the black set. On the other
hand, if a black was chosen, there would be M white balls in the white
set and N + 1 black balls in the black set. We repeat this experiment on
and on. This simple model describes the process in which a newcomer
(the added ball) mimicks in his action (his color) one of the existing
investors. This irreversible process of aggregation is clearly based on
imitation, but it also has a strong stochastic component.

Consider the initial fair state M = N = 1 at time ¢t = 0. At the next
time step t = 1, after application of the rules of the game, the urn con-
tains either M = 2 white balls and N = 1 black balls with probability
1/2 or M = 1 white balls and N = 2 black balls with probability 1/2.
At the next time step ¢ = 2, the urn contains one of three possible pop-
ulations: (1) M = 3 white balls and N = 1 black balls with probability
(1/2) x (2/3) = 1/3. (2) M = 2 white balls and N = 2 black balls with
probability (1/2) x (1/3) 4+ (1/2) x (1/3) = 1/3. There are indeed two
paths to achieve this final state, and we have thus to sum over them to
obtain the correct probability. (3) M = 1 white balls and N = 3 black
balls with probability (1/2) x (2/3) = 1/3. It is easy but becomes more
and more cumbersome to continue counting the different possibilities and
their associated probabilities as time goes on. A typical trajectory of the
fraction f,, of white and f, of black balls in the urn may be as follows.

w

Time (1 = 0, f, = 1/2, f, = 1/2): (t = L. f, = 1/3, f, = 2/3): (1 =
3, f,=1/4,f,=3/4);, t =4, f, =2/5,f, =3/5),... In the limit
where the game is repeated a large number of times, one obtains a truly
remarkable result [269], whose two sides are enticingly paradoxical: on
one hand, the fractions M /(M + N) of white balls and N/(M + N) of
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black balls eventually converge towards well-defined numbers f,, and
fs = 1 — fy, which do not fluctuate anymore; on the other hand, f,
and thus f; = 1 — f}, can take any arbitrary value between 0 and 1
with equal uniform probability. This means that, restarting the game sev-
eral times, the final fraction of white and black balls will be different,
with no relationship between one play and the next! This irreversible
model describes an imitation process that can lead to a continuum of
states; in other words, many different possible states coexist and com-
pete. Phrased in the context of imitation between agents that successively
enter the market and imitate at random one of the already active investor,
a bull or bear market may emerge completely at random as the volume
of investors progressively grows. What controls the long-term value of
fw and fz; = 1 — f;, is the initial fluctuation of the random drawing
process: if, for instance, a white ball is drawn four times in a row, this
gives a probability 4/5 to continue drawing a white ball at the next time
step, compared to only 1/5 for a black ball. If at the tenth time step,
there are 11 white and 1 black balls, the probability of reinforcing the
dominance of white balls is 11/12 compared to a probability of only
1/12 to get a black ball. This progressive freezing of the probabilities
and its feedback on the fraction of the two populations is the underlying
mechanism. We thus see that the fractions of the two populations and
their corresponding probabilities become progressively frozen, simply by
the law of large numbers.

The urn model can be generalized by changing the rules of addition
of the new balls; that is, how many new investors come into play, how
do they do so, and how do they imitate the existing players so as to
include more complex nonlinear behaviors [20, 19, 325].

This class of models also offers a mechanism for curious facts in eco-
nomics and history. Two well-cited examples are the dominance of the
VHS over the Betamax standard in the video industry and the blossom-
ing of concentrations of high-tech companies such as Silicon Valley in
California. In both cases, it is argued that some slight advantage due
to chance or other factors, such as a few more buys and movies favor-
ing the VHS standard, has progressively been amplified and frozen by
the urn mechanism. Similarly, if two valleys are competing in order to
attract high-tech companies, the one that initially has a few more compa-
nies than the other will be more attractive to new start-ups, as they will
get a slighty more active business environment. Again, this slight initial
advantage may be amplified and lead to a major advantage in the end.
The urn mechanism also provides a natural framework for reanalyzing
historical facts, in particular the often tortuous paths of human societies.
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Accordingly, the urn mechanism may cast some doubts on the view often
constructed in retrospect that history is following a deterministic trajec-
tory. In contrast, the Urn process suggests that some major historical
facts may have resulted from progressive freezing of stochastic events
that accumulated to finally put the balance on one side.

This class of models provides an alternative to the “influence” model
summarized by the expression (6), putting more emphasis on the irre-
versibility of the decision processes. In contrast, the imitation model (6)
is more in tune with a kind of “equilibrium,” allowing changes of opinion
for any of the investors. Notwithstanding these differences, the important
message is that apparently anomalous bubble phases of the market are
robust consequences of the imitative behavior of agents.

IMITATION FROM EVOLUTIONARY PSYCHOLOGY

Beyond the rationale to imitate discussed before, justification for imi-
tative tendencies can be found in evolutionary psychology [93]. The
point is that humans are rarely at their best when they use rational rea-
soning. It can indeed be demonstrated that “rational” decision-making
methods (i.e., the usual methods drawn from logic, mathematics, and
probability theory) are incapable of solving the natural adaptive prob-
lems our ancestors had to solve reliably in order to survive and repro-
duce. Because biological evolution is a slow process, and the modern
world has emerged in an evolutionary eye-blink, our present abilities
are inherited from the past and remain functionally specialized to solv-
ing the particular problems facing the hunter-gatherers of the past. This
poor performance on most natural problems is the primary reason why
problem-solving specializations were favored by natural selection over
general-purpose problem solvers. Despite widespread claims to the con-
trary, the human mind is not worse than rational, but may often be better
than rational! On evolutionarily recurrent computational tasks, such as
object recognition, grammar acquisition, or speech comprehension, the
human mind exhibits impressive skills of a quality often comparable to
or better than the best artificial problem-solving systems that decades of
research have produced.

General-purpose systems are constrained to apply the same problem-
solving methods to every problem and make no special assumption about
the problem to be solved. Specialized problem solvers are not handi-
capped by these limitations. From this perspective, the human mind is
powerful and intelligent primarily because it comes equipped with a large
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array of what one might call “reasoning instincts.” Although instincts
are often thought of as the polar opposite of reasoning, a growing body
of evidence indicates that humans have many reasoning, learning, and
preference circuits that are complexly specialized for solving the specific
adaptive problems our hominid ancestors regularly encountered. These
circuits are developed without conscious effort and are applied without
any awareness of their underlying logic. In other words, these reasoning,
learning, and preference circuits have all the hallmarks of what people
usually think of as “instincts.” They make certain kinds of inferences
just as easy and natural to humans as spinning a web is to a spider or
building a dam is to a beaver. For example, humans do not seem to have
available on-line circuits that perform many logic operations. On the
other hand, experimental evidence indicates that humans have evolved
circuits dedicated to a more specialized task of equal or greater com-
plexity: detecting cheaters in situations of exchange. Equally important,
humans have specialized circuits for understanding threats, as well as
recognizing bluffs and double-crosses. Such skills allowed the emergence
of coercive coalitions, governments, and other social arrangements, and
probably the stock market. The large risks of failure involved in hunt-
ing game and gathering food led hunter-gatherers to cooperate in small
tribes and share food in order to smooth out the otherwise wildly fluc-
tuating feast-or-famine cycles that prevailed for individuals and families.
In more modern contexts, upon stress under sufficiently large risks and
uncertainties, humans may switch on some of these adaptive sharing
programs.

Experiments show that a lucky event can lead to overconfidence [100].
In the experiments of Darke and Freedman [100], some subjects experi-
enced a lucky event, whereas others did not. All subjects then completed
an unrelated decision task, rated their confidence, and placed a bet. After
the lucky event, those who believed in luck (i.e., thought of luck as a
stable, personal attribute) were more confident and bet more. Subjects
who did not believe in luck (i.e., thought luck was random) were less
confident and bet less. Studies have also compared decisions made alone
to decisions made following interactions with others [189]. Results show
that, while interaction did not increase decision accuracy or metaknowl-
edge, subjects frequently showed stable or increasing confidence when
they interacted with others, even with those who disagreed with them
[189, 361, 382, 346, 347]. A possible interpretation is that the interaction
serves the role of rationalizing the subjects’ decisions rather than that
of collecting valuable information. There is also a herding effect. In the
same spirit, exposing to others the rationale behind decisions has been
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shown to markedly increase subjects’ confidence that their choices were
appropriate [377]. This is reminiscent of a well-known fact established
in education studies that writing enhances comprehension. It has also
been demonstrated that feedback concerning the appropriateness of con-
fidence judgments improves calibration and resolution skills [369]. The
effect is significantly stronger in men compared to women, as men often
exhibit stronger confidence in situations in which they are wrong [291].

More to the point, psychological experiments [10] have been con-
ducted in which subjects are shown real stock prices from the past and
asked to forecast subsequent changes while performing trades consistent
with these forecasts and, by so doing, accumulating wealth. These sub-
jects, of course, were asked to trade only based on past prices and were
not exposed to external “fundamental” news. It was found that subjects
track the past average when the stock prices are stable, thus trading
against price fluctuations when they arise. However, as prices began to
show consistent trends, they began to switch to a trend-chasing strategy,
buying more when prices increase and selling when prices decrease. Per-
haps even more compelling evidence of the presence of trend-chasing
strategies is the wide prevalence of “technical analysis™ that tries to spot
trends and trend reversals by using technical indicators associated with
past price movements [53].

RuMORS

Many on Wall Street think that rumors move stocks (see Figure 4.3).
The old Wall Street saying, “buy on the rumor, sell on the news,” is alive
and well, as can be seen from numerous sources in the media and the
Internet. Rumors can drive herding behavior strongly.

Rumors are most easily documented for extraordinary events. Here
are a few remarkable examples. The Y2K bug is one of the most famous
recent rumors during which misinformation was rampant. Rumors, asser-
tions, predictions, demagoguery, bluster, cover-up, and denial abounded,
such that, for the layman, it was almost impossible to sort fact from
fiction. Another example is the completely false rumor concerning the
U.S. Postal Service that was being circulated on Internet e-mails. The
e-mail message claimed that a “Congressman Schnell” has introduced
“Bill 602P” to allow the federal government to impose a ¢5 surcharge on
each e-mail message delivered over the Internet. The money would be
collected by Internet service providers and then turned over to the Postal
Service. No such proposed legislation exists. In fact, no “Congressman
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Schnell” exists. And the U.S. Postal Service denied having any authority
to surcharge e-mail messages sent over the Internet [430].

Large-scale rumors have also developed on the scale of nations [259].
Hideo Ibe, previous president of the Research Institute for Policies on
Aging, declared in a press release on February 14, 1996: “It has been
brought to my attention that Deng Xiaoping has said: Since Japanese do
not have enough children, we could send them fifty million Chinese.”
This statement seemed strange given that Japan had 340 inhabitants
per square kilometer while China had only 100, and also inprobable in
view of the strong control exerted by the immigration service of Japan.
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Had Deng Xiaoping pronounced this sentence, or was it expected from
Japanese public opinion? To determine the truth, the source of the infor-
mation should be checked, which implies checking all Chinese newspa-
pers, radio, and TV recordings during the months and perhaps the few
years preceding this announcement. This would be a difficult task that
could well fail, as occurred in the case of an alleged declaration to the
Washington Post by Algerian president Houari Boumediene: “One day,
millions of men and women will leave the meridonial and poor parts of
the world to erupt in the relatively accessible regions of the north hemi-
sphere in search of their survival.” Cited by famous French demographers
and amplified by important media managers, the declaration, which fed
a fear of invasion, has never been documented, notwithstanding a careful
investigation by the Washington Post over several years.

Circulation of such rumors calls for epidemiological studies such
as the one performed by Edgar Morin to investigate the rumor that
spread through Orléans, France, that young women were disappearing
from fashion shops owned by Jews. Morin showed how all social layers
participated in the diffusion of this rumor. On the other hand, in the
two previous examples, the contagion was maintained, justified, and
probably even created by elites, either scientists or people in charge of
the media. These rumors do not circulate in all directions, but essentially
from the top to the bottom of society. The rather sophisticated presenta-
tions, the apparently serious references that seem to justify their origins,
and their distinguished proponents provide food for amplifications
serving diverse interests and psychological biases in all layers of
society.

Notwithstanding the probable confusion it may bring to the mind of
readers, it seems appropriate to mention here a recent book by P. M.
Garber that reexamined the tulip mania and the Law and South Sea
bubbles described in chapter 1 with a fresh and close look at the his-
torical record [153]. His main conclusion is that the fabled elements
ritually invoked as underlying speculative bubbles with herding and irra-
tional behavior are just not true. Instead, he defends the view that these
events have a possible explanation in terms of fundamental valuation.
The interesting part is that Garber views the tulip mania “myth” as orig-
inating from a rumor that was progressively strengthened by successive
authors using it for their own agenda, such as to support moralistic
attacks against “excessive speculation” and, in modern times, to plead for
government regulation: “the tulipmania episode ... is simply a rhetor-
ical device used to put forward an argument that ... the existence of
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tulipmania proves that markets are crazy. A curious disturbance in a
particular modern market can then be attributed to crazy behavior, so
perhaps the market needs to be more severely regulated” [153, p. 11.],
While Garber’s book has been hailed by a series of financial economists
with high reputations, economist C. P. Kindleberger pointed out some
of the work’s shortcoming and concludes [237]: “The debate between
those who believe markets are always rational and efficient, resting on
fundamentals, and historians who call attention to a series of financial
crises going back to at least 1550 is likely to continue. Parsimony calls
for making a choice for or against financial crises; complexity permits
one to say that markets are mostly reliable but occasionally get caught
up in untoward activities.”

THE SURVIVAL OF THE FITTEST IDEA

The drive of humans to share ideas and behaviors can be tracked back
to a more fundamental level, according to the theory of “memes” intro-
duced by Richard Dawkins [102, 42]. A meme is to thinking what a gene
is to evolution. A meme is defined as any idea, behavior, or skill. Like
a gene, it can replicate by transferrring from one person to another by
imitation: stories, fashions, inventions, recipes, songs, ways of plowing a
field or throwing a baseball or making a sculpture. Like a gene, it com-
petes with other memes, as ideas and behavior compete in a culture and
between cultures. The memes come to us from all the speakers who are
vocal wherever we happen to grow up: parents, siblings, friends, neigh-
bors, teachers, preachers, bosses, coworkers, and everyone involved in
producing things like textbooks, novels, comic books, movies, television
shows, newspapers, magazines, Internet sites, and so on. All these people
are constantly repeating to each other (and of course to their children,
their students, their employees, and so on) the memes they have received
during their lifetime. All these voices taken together constitute the voice
of Mother Culture [339]. According to the meme theory, “just as the
design of our bodies can be understood only in terms of natural selec-
tion, so the design of our minds can be understood in terms of memetic
selection” [42]. For instance, Blackmore [42] showed that once our dis-
tant ancestors acquired the crucial ability to imitate, a second kind of
natural selection began, a survival of the fittest among competing ideas
and behaviors. Ideas that proved most adaptive—making tools, for exam-
ple, or using language—survived and flourished, replicating themselves
in as many minds as possible. These memes then passed themselves on
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from generation to generation by helping to ensure that the genes of
those who acquired them also survived and reproduced. Applying this
theory to many aspects of human life, this offers new perspectives for
why we live in cities, why we talk so much, why we can’t stop think-
ing, why we behave altruistically, how we choose our mates, and much
more. According to Blackmore, “When we look at religions” or other
nonscientific beliefs such as astrology,

from a meme’s eye view, we can understand why they have been so suc-
cessful. These religious memes did not set out with an intention to suc-
ceed. They were just behaviors, ideas and stories that were copied from
one person to another in the long history of human attempts to under-
stand the world. They were successful because they happened to come
together into mutually supportive gangs that included all the right tricks
to keep them safely stored in millions of brains, books and buildings, and
repeatedly passed on to more. They evoked strong emotions and strange
experiences. They provided myths to answer real questions and the myths
were protected by untestability, threats, and promises. They created and
then reduced fear to create compliance, and they used the beauty, truth
and altruism tricks to help their spread. [42, p. 192]

In a similar vein, it is tempting to interpret within the same theory
some behaviors observed on stock markets, for instance, the use of tech-
nical analysis (for a large collection of free technical analysis materials,
see http://decisionpoint.com/) for which a genuine “culture” is striving,
even if technical analysis has not been really established from a firm
scientific point of view (see, however, [53, 36, 6]).

GAMBLING SPIRITS

Investing in the stock market is a kind of lottery or gambling to many
investors, at least if one follows some of the popular press, which coined
the expression “casino stock market.”” The gambling spirit, usually
exerted in lotteries and in casinos, has become a prominent state of mind
in many states of the United States of America and may be an important
psychological factor at work in the stock market as well. Gambling
is more than taking risks. There is, of course, risk in gambling, but
gambling is something more. The word “gambling” is related to the
word “game” and comes from an old English word gammon. Gambling
is thus associated with the idea of a game. Gambling is a game. It is not
a game based on skill or on reason; it is a game based on sheer chance.
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Gambling is an appeal to sheer chance: random luck without skill or
one’s personal involvement [277]. Gambling is an activity in which a
person risks something of value to forces of chance completely beyond
his or her control, or any rational expectation, in hopes of winning
something of greater value, usually more money.

The lottery has become a major American fantasy. Estimates of the
total amount wagered are difficult to obtain, but about $500 billion are
wagered every year legally in America, and estimates run as high as $1
trillion total when illegal gambling is added in. The best statistics indi-
cate that there are about 10 million compulsive gamblers in the United
States, more than the number of alcoholics. It is interesting to realize
that gambling also played a prominent role in early American history. In
1612, the British government ran a lottery to assist the new settlement
at Jamestown, Virginia. In 1776, the First Continental Congress of the
United States sold lottery tickets to finance the American Revolution.
President Washington himself bought the first lottery ticket to build the
new capital, called Federal City—now known as Washington, D.C. The
United States was founded on a lottery, the revolution was financed by
a lottery, and the capital city was financed by a lottery.

From 1790 to 1860, 24 of the 36 states sponsored government-run
lotteries. Many schools, universities, colleges, and hundreds of churches
conducted their own lotteries to raise funds for their own buildings.
Through this period of early American history and involvement with
lotteries and government-sponsored gambling, because of the increasing
corruption of the gambling, by 1894 it had disappeared from America.
By 1894, there was no more government-sponsored gambling—it ended
in corruption and in a financial fiasco. Public gambling at any level was
stopped completely. Between 1894 and 1964, there was no government-
sponsored gambling in America. In 1964, it was reintroduced by the state
of New Hampshire, which became the first state to offer a lottery, and
now there are 37 states that have government-sponsored lotteries, and
Washington D.C. makes 38 entities. There are over 500 casinos across
the nation.

In 1974, thus 10 years later, a poll indicated that 61% of Americans
gambled, wagering $47.4 billion annually. In 1989, 71% were wagering
$246 billion. In 1992, $330 billion was being wagered. By 1995, studies
indicate that 95% of Americans gamble, 82% play the lottery, 75% play
slot machines, 50% bet on dogs and horses, 44% on cards, 34% on bingo,
26% on sporting events, 74% frequented casinos, and 89% approved of
gambling. One cannot help but compare this growth of enthusiasm for
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gambling with the bullish stock market and the remarkable growth of
the number of households owning stocks in the last decades.

Gambling expenditures each year exceed the amount spent on films,
books, amusements, music, and entertainment combined. People spend
more money gambling than they do buying tickets to all national athletic
events put together (baseball, football, and everything else). In 1993,
people spent $400 billion legally, $482 billion in 1994, and well over
$500 billion in 1999! Five billion is spent every year just in the slot
machines in Nevada alone! Ninety-two million households visit the casi-
nos, and 10% of all money earned by people in America is thrown away
in gambling!

It is difficult to assess how much this gambling spirit is active in the
minds of individual investors. If it is, even to a small degree, it is relevant
to our discussion since it makes investors prone to imitation and herding
because they invest on little information. It may also explain the anoma-
lously large volatility of prices [374] and their potential instabilities.

“ANTI-IMITATION” AND SELF-ORGANIZATION
WHY IT MAY PAY TO BE IN THE MINORITY

In a practical implementation of a trading strategy, it is not sufficient to
know or guess the overall direction of the market. There are additional
subtleties governing how the trader is going to enter (buy or sell) the
market. For instance, Anne will want to be slightly ahead of the herd
to buy at a better price, before the price is pushed up for the bullish
consensus. Symmetrically, she will want to exit the market a bit before
the crowd, that is, before a trend reversal. In other words, she would like
to be a little bit contrarian by buying when the majority is still selling
and by selling when the majority is still buying, slightly before a change
of opinion of the majority of her “neighbors.” This means that she will
not always want to follow the herd, at least at short time scales. At
this level, Anne cannot rely on the polling of her “neighbors” because
she knows that they, as well as the rest of the crowd, will have similar
ideas to try to out guess each other on when to enter the market. More
generally, Anne would ideally like to be in the minority when entering
the market, in the majority while holding her position, and again in the
minority when closing her position.

This leads to another class of behaviors, very different from those
based on imitation and herding. Here, the problem for Anne is to use past
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information to make her decision to buy the market when she believes
that the majority of the others will not yet do it. She thus has to be in
the minority. Profiting from being in the minority leads to interesting
paradoxes. Rather diabolically, if all traders use the same set of rules,
they will end up doing the same thing at the same time and cannot
therefore be in the minority. This leads to a wonderful paradox: contrary
to imitative behavior that gets reinforced when everybody does it, to be
in the minority implies striving to be different and, thus, cannot result
from using the same rules for all. By adaptation, Anne and her colleagues
will thus learn and be forced to differentiate their enter strategies based
on past successes and failures.

EL-FAROL’S BAR PROBLEM

This issue has recently been formalized in the framework of so-called
“minority games.” A minority game is a repeated game where N players
have to choose one out of two alternatives (say A and B) at each time
step. Those who happen to be in the minority win. Although being rather
simple at first glance, this game is subtle in the sense that, as we have
already said, if all players analyze the situation in the same way, they all
will choose the same alternative and lose. Moreover, there is a frustration
since not all the players can win at the same time. Minority games are
abstractions of the famous El-Farol’s bar problem [17]. In that model,
100 people decide independently each week whether to go to a bar that
offers entertainment on a certain night. Space is limited, and the evening
is only enjoyable if the bar is not too crowded—specifically, if fewer
than 60% of the possible 100 are present. There is no way to tell the
numbers coming for sure in advance, therefore a person goes, that is,
deems it worth going, if she expects fewer than 60 to show up; she
stays home if she expects more than 60 to go. Choices are unaffected by
previous visits; there is no collusion or prior communication among the
people; and the only information available is the numbers who came in
past weeks. What is the dynamics of the numbers attending from week
to week?

To answer this, Arthur [17] assumed that the 100 persons can each
individually form several predictors or hypotheses in the form of func-
tions that map the past d weeks’ attendance figures into next week’s.
Such predictors are the analog of technical trading recipes that investors
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use to help form their decisions. For example, following the example of
Arthur, recent attendance numbers might be

44 78 56 15 23 67 84 34 45 76 40 56 22 35.

Particular hypotheses or predictors to predict next week’s number might
be [17]

o the same as last week’s, giving 35 at the prediction for the attendence
of next week,

e a mirror image around 50 of last week’s, giving 65,

e a (rounded) average of the last four weeks, giving 49,

e the trend in the last eight weeks, bounded by 0 and 100, giving 29,
e the same as two weeks ago (two-period cycle detector), giving 22,
o the same as five weeks ago (five-period cycle detector), giving 76,
e cfc.

Arthur assumes that each person possesses and keeps track of an individ-
ualized set of k such focal predictors. She decides to go or stay accord-
ing to the currently most accurate predictor in her set. Once decisions
are made, each agent learns the new attendance figure and updates the
accuracies of her monitored predictors. In this bar problem, the set of
hypotheses currently most credible and acted upon by the person deter-
mines the attendance. But the attendance history determines the set of
active hypotheses. This is an analog to an important mechanism at work
in stock markets: the use of predictors and their impact on attendance
is indeed similar to the use of “technical indicators” used by technical
analysts to forecast the market.

Using artificial persons who choose at random & (6 or 12 or 23, say)
different predictors among several dozen focal predictors replicated many
times, a computer simulation allows us to investigate what happens. Each
artificial person then possesses k predictors or hypotheses she can draw
upon, and at each time step, she chooses the one that has performed best
in the past (even if it has not been used). This deterministic dynamics
gives the bar attendance shown in Figure 4.4. The remarkable result
is that the predictors self-organize into an equilibrium pattern in which
the most accurate predictors, on average, are forecasting 40% of the
time above 60, and 60% of the time below 60. While the population
of best predictors splits into this 60/40 average ratio, it keeps changing
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FiG. 4.4. Bar attendance in El Farol’s bar problem posed by B. Arthur as a paradigm
for “minority games.” Reproduced from [17].

in membership forever. These results appear throughout the experiments
robust to changes in types of predictors created and in numbers assigned
[17]. The pattern shown in Figure 4.4 is reminiscent of the patterns of
price variations observed for a typical stock (see chapter 2). This suggests
a mechanism for the “noisy” structure of price variations and returns
whose origin may be rooted in the fact that investors cannot all win at
the same time and have to choose different strategies if they want to win.

MINORITY GAMES

Many variants of this minority game have been introduced which gener-
alize the phenomenon and capture an essential feature of systems where
agents compete for limited resources. In minority games, artificial agents
with partial information and bounded rationality base their decision only
on the knowledge of the M (for memory) last winning alternatives, called
histories. Take all the histories and fix a choice (A or B) for each of
them: you get a strategy, which is like a theory of the world. Each strat-
egy has an intrinsic value, called virtual value, which is the total number
of times the strategy has predicted the right alternative, A or B. At the
beginning of the game, every player gets a limited set of S strategies.
She uses them inductively; that is, she uses the strategy with the highest



118 CHAPTER 4

virtual value (ties are broken by coin tossing). It must be emphasized that
a player does not know anything about the others; all her information
come from the virtual values of the strategies.

The more striking properties of the minority game (MG) are: (1) it is a
model that addresses the interaction between agents and information; (2)
the agents are able to cooperate (but without direct exchanges); (3) the
agents minimize the available information; (4) there is a critical transition
between a symmetric phase with no information available to agents and
an asymmetric phase with available information to agents. The control
parameter is the ratio « = P/N of the number P of the different possible
states of fundamental information divided by the number N of agents.
When « is less than «,., where «, is a special value of the order of 1,
the market is efficient and there is no information that can be used for
prediction. In contrast, for « larger than «,., a new agent could profit
from the existence of predictive structure in the dynamics: there are not
enough agents to exploit and remove all information. We recover here the
insight already discussed in the section titled “A Parable,” in chapter 2.

An intuitive and qualitative understanding of minority games can be
obtained by using the insight obtained from expression (6) in the section
titled “Explanation of the Imitation Strategy” for the imitative strategy.
Indeed, in (6), a positive coefficient K quantifies the force of imitation.
Contrarian behavior corresponds to the case where K is negative. In the
analogy with spins of magnetic materials, imitation (K > 0) leads to
the ferromagnetic phase (magnet) or global cooperative behavior that we
describe in the following section, titled “Cooperative Behaviors Result-
ing from Imitation.” Contrarian behavior (K < 0) corresponds to the
so-called “antiferromagnetic” interaction. In the physics of material sci-
ences, anti-ferromagnetic interactions are known to lead to weird behav-
ior and often complex phases resulting from the frustration induced by
not being able to satisfy all pairs of interacting elements simultaneously.
This problem has the same qualitative paradoxical properties that we
have described for the minority games.

IMITATION VERSUS CONTRARIAN BEHAVIOR

Real markets result from agents’ behaviors, which are neither fully imi-
tative nor fully anti-imitative, in contrast with the claims of presently
available reductionist models and theories. A better representation of real
markets requires a combination of the two. Indeed, one should distin-
guish the “buy” and “sell” actions from the “holding” period.
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1. The price of an asset at any given time is fundamentally determined
from the balance between supply and demand: more “buy” than “sell”
orders will drive the price up and vice versa. If Anne wants to buy
(sell), she wants to be in the minority such that the price tends to
decrease (increase) and she thus gets a better instantaneous bargain.
The “buy” and “sell” actions are optimized when Anne is able to be
in the minority.

2. Once she is invested in the market, she gains if her investment agrees
with the opinion of the majority: if she bought (sold), she would gain
in a book-to-market measure only if the price goes up (down). The
gain in the “holding” period is thus optimized when Anne belongs to
the majority.

To fix these ideas, let us assume that the time it takes for a trans-
action to be concluded is At, equal to, say, one minute (most of the
time, not-too-large transactions can be performed much faster through
the Internet). The first minority optimization thus concerns this short
time interval and amounts to minimizing the possible difference between
an order price and its concrete implementation: Anne gives a “buy” order
at 100 but the transaction is concluded at 101 because many others are
buying, driving the price up during the short time interval between her
order and its concrete implementation. She thus pays more than what
she intended. This is what she wants to avoid by being in the minority,
that is, buying before the crowd of buyers. In contrast to what happens at
this short time scale, the holding period can last much longer, say nAt.
The relative impact of the contrarian behavior on the imitation forces
is thus of the order of 1/n, the ratio of the time to enter in position to
the holding time. For “intraday” traders who are very active, this ratio
may not be small at all. The large amount of works on minority games
[77, 78, 76, 75] suggests that changing one’s strategy often may be prof-
itable in that situation. It also suggests that only when the information
complexifies or when the number of traders decreases will the traders be
able to make consistent profits. In contrast, the buy-and-hold strategies
profit as long as the information remains simple, such as when a trend
remains strong. The problem then boils down to exit/reverse before or at
the reversal of the trend.

The difficulty however, as everyone who has tried to invest in the stock
market will know, is that trends and trend reversals occur at all time
scales. Figure 4.5 illustrates this observation by a construction based on
the insertion of a succession of trends and trend reversals at all scales.
This geometric construction, which improves and generalizes the random
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F1G. 4.5. Simple chart that inserts price changes from time O to a later time 1
in successive steps to illustrate the concept of trends occurring at all time scales.
The intervals are chosen arbitrarily and may represent a minute, an hour, a day, or
a year. The process begins with a trend from the bottom-left corner (0,0) to the
right-up corner (1,1). Next, a broken line called a generator is used to create the
up-and-down pattern piece 1-piece 2—piece 3. Then, each of the three pieces are
themselves replaced by three smaller pieces obtained by a suitable scale reduction
of the initial generator (the interpolated generator is inverted for each descending
piece). Repeating these steps reproduces the shape of the generator, or price curve,
but at compressed scales. Both the horizontal axis (time scale) and the vertical axis
(price scale) are squeezed to fit the horizontal and vertical boundaries of each piece
of the generator. Reproduced from [285] Courtesy of Laurie Grace.
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walk model, reproduces quite closely the structure of price trajectories
shown in chapter 2. These scale-invariant patterns are made of building
blocks of up-and-down trends that can be observed and reproduce them-
selves at all scales and almost everywhere. These patterns belong to the
geometry of fractals [284], a rough or fragmented geometric shape that
can be subdivided into parts, each of which is (at least approximately) a
reduced-size copy of the whole. The concept of fractals, introduced by
Mandelbrot, captures the rough, broken, and irregular characteristics of
many phenomena in nature, present at all scales. We shall come back to
this construction, shown in Figure 4.5, and its implications in chapter 6.

COOPERATIVE BEHAVIORS RESULTING
FROM IMITATION

We borrow and adapt the following tale on the slime mold from Steven
Johnson [223] and Evelyn Fox Keller [233]. The slime mold (Dic-
tyostelium discoideum) is a reddish orange mass of cells that can be
found, among other places, coating rotting wood in damp sections
of forests. Most of the time, the slime mold’s motions are barely
perceptible, except when the weather conditions grow wetter and cooler,
when suddenly it “decides” to “walk away.” Indeed, the slime mold
spends much of its life as thousands of distinct single-celled units, each
moving separately from its other comrades. Under the right conditions,
those myriad cells will coalesce into a single, larger organism, which
then begins its leisurely crawl across the forest floor, consuming rotting
leaves and wood as it moves about.

When the environment is less hospitable, the slime mold acts as a sin-
gle organism: when the mold enjoys a large food supply, “it” becomes a
“they.” The slime mold oscillates between being a single creature and a
swarm. How do all these cells manage to work so well together? Slime
cells have been shown to emit a common substance called acrasin (also
known as cyclic AMP), through which they exchange information. For
many years, scientists believed that the aggregation process was coor-
dinated by specialized slime-mold cells, known as “pacemaker” cells.
According to this theory, each pacemaker cell sends out a chemical sig-
nal, telling other slime-mold cells to gather around it, resulting in a
cluster.

However, while scientists agreed that waves of cyclic AMP do indeed
flow through the slime-mold community before aggregation, all the cells
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in the community are effectively interchangeable. None of them possess
any distinguishing characteristics that might elevate them to pacemaker
status. In the late 1960s, Evelyn Fox Keller and Lee Segel developed a
mathematical model [234] (now called the Keller—Segel model in chemo-
taxis) of how slime cells could self-organize into a coherent organism
by continuous release and exchange of cyclic AMP. The model only
assumes that every individual cell follows the same set of simple rules,
involving the emission and sensing of chemicals. Altering the amount of
cyclic AMP each cell releases individually as a function of the amount
of cyclic AMP present in the environment, each cell can follow trails of
the pheromone that they encounter as they wander through their envi-
ronment. When the slime cells pump out enough cyclic AMP, clusters of
cells start to form spontaneously. Cells can then better follow the trails
created by other cells, creating a positive feedback loop that encourages
more cells to join the cluster.

Slime mold aggregation is now recognized as a classic case study
in bottom-up behavior and self-organization, similar in a sense to that
occurring in stock markets. Spontaneous pattern formation has been
and is still a very active domain of study, allowing us to understand,
for instance, the origins of the patterns on the furs of zebras and
leopards [409, 410]. The general concept works similarly in many
distinct fields: pattern and evolving organization result from the com-
petition between at least one disordering and one ordering force. In
the case of the slime-mold, the disordering force is the spontaneous
tendency of cells to wander on their own. The ordering force stems from
the interactions mediated through the release and reaction of cells to
cyclic AMP. The relative strength of these two forces decides whether
the slime-mold cells self-organize into a single unit or live their own
distinct lives. A similar fight between ordering and disordering forces
between financial agents will be described in chapter 5. The concept that
cooperative behavior leads to the emergence of self-organization into
novel patterns is at the core of the take-home message of this book. The
force derived from self-organization is nicely illustrated in the cartoon
of Figure 4.6.

THE ISING MODEL OF COOPERATIVE BEHAVIOR
The imitative behavior discussed in the section titled “It Is Optimal to

Imitate When Lacking Information” in the present chapter and captured
by the expression (6) on page 102 belongs to a very general class of
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FiG. 4.6. Illustration of the concept that cooperative behavior is a strong force for
self-organization. Created by and courtesy of B. A. Huberman.

so-called stochastic dynamical models developed to describe interacting
elements, particles, and agents in a large variety of contexts, in particular
physics and biology [265, 266]. The tendency or force towards imita-
tion is governed by the parameter K, which can be called the “coupling
strength”; the tendency towards idiosyncratic (or noisy) behavior is gov-
erned by the amplitude o of the noise term. Thus the value of K relative
to o determines the outcome of the battle between order and disorder,
and eventually the structure of the market prices. More generally, the
coupling strength K could be heterogeneous across pairs of neighbors,
and it would not substantially affect the properties of the model. Some
of the K;;’s could even be negative, as long as the average of all K;’s
was strictly positive.

The expression (6) on page 102 only describes the state of an agent
at a given time. In the next instant, new g;’s are realized, new influ-
ences propagate themselves to neighbors, and agents can change their
decision according to Figure 4.2. The system is thus constantly changing
and reorganizing, as shown in Figure 4.7. The model does not assume
instantaneous opinion interactions between neighbors. In real markets,
opinions indeed tend not to be instantaneous, but are formed over a
period of time by a process involving family, friends, colleagues, news-
papers, web sites, TV stations, and so on. Decisions about the trading
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F1G. 4.7. Four snapshots at four successive times of the state of a planar system of
64 x 64 agents put on a regular square lattice. Each agent placed within a small
square interacts with her four nearest neighbors according to the imitative rule (6)
of page 102. White (respectively, black) squares correspond to “bull” (respectively,
“bear”). The four cases shown here correspond to the existence of a majority of buy
orders, as white is the predominant color.

activity of a given agent may occur when the consensus from all these
sources reaches a trigger level. This is precisely this feature of a thresh-
old reached by a consensus that expression (6) captures: the consensus is
quantified by the sum over the N (i) agents connected to agent i, and the
threshold is provided by the sign function. The delay in the formation of
the opinion of a given trader as a function of other traders’ opinions is
captured by the progressive spreading of information during successive
updating steps (see, for instance, [265, 266]).

The simplest possible network is a two-dimensional grid in the
Euclidean plane. Each agent has four nearest neighbors: one to the
North, the South, the East, and the West. The tendency K towards
imitation is balanced by the tendency o towards idiosyncratic behavior.
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Fic. 4.8. K < K_: Buy (white squares) and sell (black squares) configuration in
a two-dimensional Manhattan-like planar network of 256 x 256 agents interacting
with their four nearest neighbors. There are approximately the same number of white
and black sells; that is, the market has no consensus. The size of the largest local
clusters quantifies the correlation length, that is, the distance over which the local
imitations between neighbors propagate before being significantly distorted by the
“noise” in the transmission process resulting from the idiosyncratic signals of each
agent.

In the context of the alignment of atomic spins to create magnetization
(magnets), this model is identical to the so-called two-dimensional Ising
model, which has been solved explicitly by Onsager [321]. Only its
formulation is different from what is usually found in textbooks [164],
as we emphasize a dynamical viewpoint.

In the Ising model, there exists a critical point K, that determines the
properties of the system. When K < K, (see Figure 4.8), disorder reigns:
the sensitivity to a small global influence is small, the clusters of agents
who are in agreement remain of small size, and imitation only propagates
between close neighbors. In this case, the susceptibility y of the system
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F1G. 4.9. Same as Figure 4.8 for K close to K. There are still approximately the
same number of white and black sells; that is, the market has no consensus. How-
ever, the size of the largest local clusters has grown to become comparable to the
total system size. In addition, holes and clusters of all sizes can be observed. The
“scale-invariance” or “fractal”-looking structure is the hallmark of a “critical state”
for which the correlation length and the susceptibility become infinite (or simply
bounded by the size of the system).

to external news is small, as many clusters of different opinions react
incoherently, thus more or less cancelling out their responses.

When the imitation strength K increases and gets close to K, (see
Figure 4.9), order starts to appear: the system becomes extremely sensi-
tive to a small global perturbation, agents who agree with each other form
large clusters, and imitation propagates over long distances. In the natu-
ral sciences, these are the characteristics of so-called critical phenomena.
Formally, in this case the susceptibility y of the system goes to infinity.
The hallmark of criticality is the power law, and indeed the susceptibility
goes to infinity according to a power law y ~ A(K, — K)~?, where A
is a positive constant and y > 0 is called the critical exponent of the
susceptibility (equal to 7/4 for the two-dimensional Ising model). This
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F1G. 4.10. Same as Figure 4.8 for K > K, The imitation is so strong that the
network of agents spontaneously breaks the symmetry between the two decisions and
one of them predominates. Here, we show the case where the “buy” state has been
selected. Interestingly, the collapse into one of the two states is essentially random
and results from the combined effect of a slight initial bias and of fluctuations during
the imitation process. Only small and isolated islands of “bears” remain in an ocean
of buyers. This state would correspond to a bubble: a strong bullish market.

kind of critical behavior is found in many other models of interacting
elements [265, 266] (see also [310] for applications to finance, among
others). The large susceptibility means that the system is unstable: a
small external perturbation may lead to a large collective reaction of the
traders who may drastically revise their decision, which may abruptly
produce a sudden unbalance between supply and demand, thus trigger-
ing a crash or a rally. This specific mechanism will be shown to lead to
crashes in the model described in chapter 5.

For even stronger imitation strength K > K, the imitation is so strong
that the idiosynchratic signals become negligible and the traders self-
organize into strong imitative behavior, as shown in Figure 4.10. The
selection of one of the two possible states is determined from small and
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subtle initial biases as well as from the fluctuations during the evolution-
ary dynamics.

These behaviors apply more generically to other network topologies.
Indeed, the stock market constitutes an ensemble of interacting investors
who differ in size by many orders of magnitude ranging from indi-
viduals to gigantic professional investors, such as pension funds. Fur-
thermore, structures at even higher levels, such as currency influence
spheres (U.S.$, DM, Yen, ...), exist and with the current globalization
and deregulation of the market one may argue that structures on the
largest possible scale, that is, the world economy, are beginning to form.
This observation and the network of connections between traders show
that the two-dimensional lattice representation used in the Figures 4.7,
4.8, 4.9, and 4.10 is too naive. A better representation of the structure
of the financial markets is that of hierarchical systems with “traders” on
all levels of the market. Of course, this does not imply that any strict
hierarchical structure of the stock market exists, but there are numerous
examples of qualitatively hierarchical structures in society. In fact, one
may say that horizontal organizations of individuals are rather rare. This
means that the plane network used in our previous discussion may very
well represent a gross oversimplification.

One of the best examples of a hierarchy is found in the army. At
the lowest level of a military force is a single soldier. Ten soldiers pro-
duce a squad. Three squads produce a regiment; three regiments produce
a brigade; three brigades give a division; three divisions give a corps.
An army might have several corps and a country might have several
armies. In hierarchical networks, information can flow from the top down
and from bottom up, as shown in Figure 4.11. Notwithstanding the large
variety of topological structures, the qualitative conclusion of the exis-
tence of a critical transition between a mostly disordered state and an
ordered one, separated by a critical point, survives by-and-large for most
possible choices of the network of interacting investors, including for
hierarchical networks.

Even though the predictions of these models are quite detailed, they
are very robust to model misspecification. We indeed claim that models
that combine the following features would display the same characteris-
tics, in particular apparent coordinate buying and selling periods, leading
eventually to several financial crashes. These features are:

1. a system of traders who are influenced by their “neighbors”;
2. local imitation propagating spontaneously into global cooperation;

3. global cooperation among noise traders causing collective behavior;
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4. prices related to the properties of this system;
5. system parameters evolving slowly through time.

As we shall show in the following chapters, a crash is most likely when
the locally imitative system goes through a critical point.

In physics, critical points are widely considered to be one of the
most interesting properties of complex systems. A system goes criti-
cal when local influences propagate over long distances and the average
state of the system becomes exquisitely sensitive to a small perturbation;
that is, different parts of the system become highly correlated. Another
characteristic is that critical systems are self-similar across scales: in
Figure 4.9, at the critical point, an ocean of traders who are mostly
bearish may have within it several continents of traders who are mostly
bullish, each of which in turns surrounds seas of bearish traders with
islands of bullish traders; the progression continues all the way down to
the smallest possible scale: a single trader [458]. Intuitively speaking,
critical self-similarity is why local imitation cascades through the scales
into global coordination.

Critical points are described in mathematical parlance as singularities
associated with bifurcation and catastrophe theory. Catastrophe theory
studies and classifies phenomena characterized by sudden shifts in behav-
ior arising from small changes in circumstances. Catastrophes are bifur-
cations between different equilibria, or fixed point attractors of dynami-
cal systems. Due to their restricted nature, catastrophes can be classified
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FIG. 4.11. In a hierarchical structure, the messages can move from the top of the
hierarchy to the bottom (left panel) or from the bottom to the top (right panel), as
in the ancestor structure. The difference between the two is that, in the hierarchical
structure, the nodes have to make a decision (as to which node to pass the message
on to) before they pass the message on, while in the ancestor structure there is
no need to make such a decision because there is only the single choice available
(reproduced from [383]).
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based on how many control parameters are being simulataneously var-
ied. For example, if there are two controls, then one finds the most
common type, called a “cusp” catastrophe. Catastrophe theory has been
applied to a number of different phenomena, such as the stability of
ships at sea and their capsizing and bridge collapse. It has also been
used to describe situations in which agents with similar characteristics
and objectives and facing identical or similar environments make choices
that are considerably different. The use of catastrophe theory relies on
the desire to model many of the situations that lead to sudden changes
in decisions on the part of policy makers and individuals, polarity of
opinion, and group conflict [385, 47]. In essence, this book attempts to
provide mechanisms for the spontaneous occurrence of bifurcations and
“catastrophes” in the behavior of investors and of financial markets.

CoMPLEX EVOLUTIONARY ADAPTIVE SYSTEMS
OF BOUNDEDLY RATIONAL AGENTS

The previous Ising model is the simplest possible description of coop-
erative behaviors resulting from repetitive interactions between agents.
Many other models have recently been developed in order to capture
more realistic properties of people and of their economic interactions.
These multiagent models, often explored by computer simulations,
support the hypothesis that the observed characteristics of financial
prices described in chapter 2, such as non-Gaussian “fat” tails of dis-
tributions of returns, mostly unpredictable returns, clustered and excess
volatility, may result endogenously from the interaction between agents.
This relatively new school of research, championed in particular by
the Santa Fe Institute in New Mexico [8, 18] and being developed
now in many other institutions worldwide, views markets as complex
evolutionary adaptive systems populated by boundedly rational agents
interacting with each other. El-Farol’s bar problem and the minor-
ity games discussed previously are examples of this general class of
models. We now briefly review some representative works to illustrate
the variety and power but also the limitations of these approaches.
These agent-based models owe a great intellectual debt to the work
of Herbert Simon [379], whose notion of “bounded rationality,” based
on his contributions at the intersection of economics, psychology, and
computer science, is the foundation on which much of the recent
behavioral economics literature is built. The principal concern of this
school of research applied to economic modeling [2] is to understand
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why certain global regularities have been observed to evolve and persist
in decentralized market economies despite the absence of top-down
planning and control such as trade networks, socially accepted monies,
market protocols, business cycles, and the common adoption of tech-
nological innovations. The challenge is to demonstrate constructively
how these global regularities might arise from the bottom up, through
the repeated local interactions of autonomous agents. A second concern
of researchers is to use this framework as computational laboratories
within which alternative socioeconomic structures can be studied and
tested with regard to their effects on individual behavior and social
welfare.

Typical of the Sante Fe school, Palmer et al. [329, 21, 258] mod-
elled traders as so-called “genetic algorithms,” which are computer soft-
ware creatures mimicking the adaptative and evolving biological genes
that compete for survival and replication. These intelligent algorithms
make predictions about the future, and buy and sell stock as indicated
by their expectations of future risk and return. With certain characteris-
tics, these computer agents are found to be able to collectively learn to
create a homogeneous rational expectations equilibrium, that is, to dis-
cover dynamically the economic equilibrium imagined by pure theoreti-
cal economists. In this highly competitive artificial world, a trader-gene
taking some “vacation” loses his “shirt” when returning back in the stock
market arena, because he is no longer adapted to the new structures that
were developed by the market in his absence! Farmer [123] has simpli-
fied this approach using the analogy between financial markets and an
ecology of strategies. In a variety of examples, he shows how diversity
emerges automatically as new strategies exploit the inefficiencies of old
strategies.

The Laboratory for Financial Engineering at the Massachusetts Insti-
tute of Technology [251, 341] is another noteworthy example of such
pursuits. The artificial market project in particular focuses on the dynam-
ics arising from interactions between human and artificial agents in a
stochastic market environment in which agents learn from their inter-
actions, using recently developed techniques in large-scale simulations,
approximate dynamic programming, computational learning, and tapping
insights in and resources from mathematics, statistics, physics, psychol-
ogy, and computer science. This laboratory recently constructed an arti-
ficial market, designed to match those in experimental-market settings
with human subjects, to model complex interactions among artificially
intelligent (AI) traders endowed with varying degrees of learning capa-
bilities [79]. The use of Al agents with simple heuristic trading rules and
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learning algorithms shows that adding trend-follower traders to a pop-
ulation of empirical fundamentalists has an adverse impact on market
performance, and the trend-follower traders do poorly overall. However,
this effect diminishes over time as the market becomes more effcient.
In numerical experiments in which “scalper” traders, who simply trade
on patterns in past prices, are added to a population of fundamentalists,
the “scalpers” are relatively successful free riders, not only matching the
performance of fundamentalists in the long run, but outperforming them
in the short run.

Brock and Hommes and coworkers [54, 58, 55, 56, 57, 200, 257]
have developed models of financial markets seen as “adaptative belief”
systems of boundedly rational agents using different, competing trading
strategies. The terms “rational” and “adaptative” refer to the fact that
agents tend to follow strategies that have performed well, according to
realized profits or accumulated wealth, in the recent past; the adjective
“boundedly” refers to the fact that they can only use one among a set
of relatively simple strategies. Price changes are explained by a combi-
nation of economic fundamentals and “market psychology,” that is, by
the interplay between several coexisting heterogeneous classes of trad-
ing strategies. Most of the systems considered by Brock and Hommes
and their coworkers have specialized to the case of a small number
of competing strategies leading to dynamical trajectories of prices gov-
erned by so-called low-dimensional strange attractors, exemplifying the
importance of chaos, of the simultaneous importance of different attrac-
tors, and of the existence of local bifurcations of steady states in these
models. This theoretical approach explains why simple technical trad-
ing rules may survive evolutionary competition in a heterogeneous world
where prices and beliefs coevolve over time. These evolutionary mod-
els account for stylized facts of real markets, such as the fat tails and
volatility clustering described in chapter 2.

Several works have modelled the epidemics of opinion and specula-
tive bubbles in financial markets from an adaptative agent point of view
[238, 273, 274, 275, 276]. The main mechanism for bubbles is that above
average returns are reflected in a generally more optimistic attitude that
fosters the disposition to overtake others’ bullish beliefs and vice versa.
The adaptive nature of agents is reflected in the alternatives available to
agents to choose between several classes of strategies, for instance, to
invest according to fundamental economic valuation or by using tech-
nical analysis of past price trajectories. Other relevant works put more
emphasis on the heterogeneity and threshold nature of decision making,
which lead in general to irregular cycles [421, 460, 262, 360, 263, 154].
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These approaches are to be constrasted with the efficient market
hypothesis that assumes that the movement of financial prices is an
immediate and unbiased reflection of incoming news about future earn-
ing prospects. Under the efficient market hypothesis, the deviations
from the random walk observed empirically would simply reflect similar
deviations in extraneous signals feeding the market. The simulations
performed on computers allow us to test this hypothesis in artificial
stock markets. Notwithstanding the fact that the news arrival processes
are constructed as random walk processes, non-random-walk price
characteristics emerge spontaneously as a result of the nonlinear and
imitative interactions between investors. This shows that one does not
need to assume a complex information flow to account for the complex-
ity of price structures: the self-organization of the market dynamics is
sufficient to create it endogenously.

In conclusion, we see that there is a plethora of models that account
approximately for the usual main stylized facts observed in stock markets
(fat tail of the distribution of returns, absence of correlation between
returns, long-range dependence between successive return amplitudes,
and volatility clustering). However, these models do not predict the char-
acteristic bubble structures discussed in this book (see chapters 6-10).
In the next chapter, we therefore turn to models aimed specifically at
capturing these important patterns.



CHAPTER 5

MODELING FINANCIAL
BUBBLES AND MARKET
CRASHES

The purpose of models is not to fit the data but to

sharpen the questions.

— S. Karlin, 11th R. A. Fisher Memorial Lecture,
Royal Society, April 20, 1983.

WHAT IS A MODEL?

Knowledge is encoded in models. Models are
synthetic sets of rules, pictures, and algorithms providing us with useful
representations of the world of our perceptions and of their patterns. As
argued by philosophers and shown by scientists, we do not have access
to “reality,” only to some of its manifestations, whose regularities are
used to determine rules, which when widely applicable become “laws
of nature.” These laws are constantly tested in the scientific march, and
they evolve, develop and transmute as the frontier of knowledge recedes
further away.

Like a novel, a model may be convincing—it may ring true if it is consistent
with our experience of the natural world. But just as we may wonder how
much the characters in a novel are drawn from real life and how much
is artifice, we might ask the same of a model: how much is based on
observation and measurement of accessible phenomena, how much is based
on informed judgment, and how much is convenience? Verification and
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validation of numerical models of natural systems is impossible. The only
propositions that can be verified, that is, proved true, are those concerning
closed systems, based on pure mathematics and logic. Natural systems are
open: our knowledge of them is always partial, approximate, at best. [322]

Models are usually formulated with mathematics. Mathematics is
nothing but a language, with its own grammar and syntax—arguably
the simplest, clearest, and most concise language of all. It allows us to
articulate efficiently and guide our trains of thought. It gives us logical
deductions, flowing from the premises that we imagine to their forceful
consequences. Learning and using mathematics is like striving to master
Kung-Fu, both a technique and a way of life that enhances your skills
and awareness. As with Kung-Fu, mathematics may be frightening or
incomprehensible to many. As with any foreign language or combat
technique, you have to learn it and practice it to be fluent and comfort-
able with it. The two models presented in what follows are also based
on mathematics, and their rigorous treatment requires its use. Here,
however, we shall strive to remove all the unnecessary technicalities and
present only the main concepts with illustrations and pictures.

STRATEGY FOR MODEL CONSTRUCTION IN FINANCE
BAsIC PRINCIPLES

The consistent modeling of financial markets remains an open and
challenging problem. A simple, economically plausible mathematical
approach to market modeling is needed which captures the essence of
reality. The existing approaches to financial market modeling are quite
diverse, and the literature is rather extensive. Significant progress in
our understanding of financial markets was acquired, for instance, by
Markowitz with the mean-variance portfolio theory [288], the capital
asset pricing model of Sharpe [370] and its elaboration by Lintner,
Merton’s [293] and Black and Scholes’s option pricing and hedging the-
ory [41], Ross’s arbitrage pricing theory [353], and Cox, Ingersoll, and
Ross’s theory of interest rates [95], to cite a few of the major advances.
Economic models differ from models in the physical sciences in
that economic agents are supposed to anticipate the future. Each one’s
decision depends on the decisions of others (strategic interdependence)
and on expectations about the future. This is illustrated by the follow-
ing pictorial analogy [113]. Suppose that in the middle ages, before
Copernicus and Galileo, the Earth really was stationary at the center of
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the universe, and only began moving later on. Imagine that during the
nineteenth century, when everyone believed classical physics to be true,
it really was true, and quantum phenomena were nonexistent. These
are not philosophical musings, but an attempt to portray how physics
might look if it actually behaved like the financial markets. Indeed, the
financial world is such that any insight is almost immediately used to
trade for a profit. As the insight spreads among traders, the “universe”
changes accordingly. As G. Soros has pointed out, market players are
“actors observing their own deeds.” As E. Derman, head of quantitative
strategies at Goldman Sachs, puts it, in physics you are playing against
God, who does not change his mind very often. In finance, you are
playing against God’s creatures, whose feelings are ephemeral, at best
unstable, and the news on which they are based keeps streaming in.
Value clearly derives from human beings, while mass, electric charge
and electromagnetism apparently do not. This has led to suggestions
that a fruitful framework for studying finance and economics is to use
evolutionary models inspired from biology and genetics, to which we
alluded in chapter 4.

Perhaps the most profound synthesis of physical sciences came from
the realization that everything could be understood from ‘“‘conservation
laws” and symmetry principles. For instance, Newton’s law that the
acceleration, that is, the rate of change of velocity of a body of mass m,
is proportional to the total force applied to it divided by m, follows from
the conservation of momentum in free space (the law of inertia associ-
ated with Galilean invariance). Another example is that the fundamental
equations of motion of so-called “strings,” formulated to describe the
fundamental particles such as quarks and electrons, derive from global
symmetry principles and dualities between descriptions at long-range and
short-range scales. Are there similar principles that can guide the deter-
mination of the equations of motion of the more down-to-earth financial
markets?

THE PRINCIPLE OF ABSENCE OF ARBITRAGE OPPORTUNITY

One such organizing principle is the condition of absence of arbitrage
opportunity, which we have already visited in chapter 2. Recall that
no-arbitrage, also known as the Law of One Price, states that two assets
with identical attributes should sell for the same price, and so should
the same asset trading in two different markets. If the prices differ,
a profitable opportunity arises to sell the asset where it is overpriced
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and to buy it where it is underpriced. The basic idea is that, if there are
arbitrage opportunities, they cannot live long or must be quite subtle,
otherwise traders would act on them and arbitrage them away. The
no-arbitrage condition is an idealization of a self-consistent dynamical
state of the market resulting from the incessant actions of the traders
(arbitragers). It is not the out-of-fashion equilibrium approximation
sometimes described; rather, it embodies a very subtle cooperative
organization of the market. We take this condition as the first-order
approximation of reality. We shall see that it provides strong constraints
on the structure of the model and allows us to draw interesting and
surprising predictions. The idea to impose the no-arbitrage condition
is in fact the prerequisite of most models developed in the academic
finance community. Modigliani and Miller [302, 299], for instance, have
indeed emphasized the critical role played by arbitrage in determining
the value of securities.

It is important here to stress again that the no-arbitrage condition
together with rational expectations is not a mechanism. It does not
explain its own origin. It is a principle describing the emergent large-scale
organization of market participants. It does not tell us what its underly-
ing specific mechanisms are. Assuming the validity of the no-arbitrage
condition together with rational expectations amounts to postulating
that a fraction of the population of traders behave in such a way that
prices tend to reflect available information and that risk is adequately
and approximately fairly remunerated. In order to understand the specific
manners with which this is attained would require a level of modeling
not yet available at present and whose achievement is at the heart of a
very active domain of research that we only glimpsed in chapter 4.

As we pointed out in chapter 2, the existence of transaction costs and
other imperfections of the market should not be used as an excuse for dis-
regarding the no-arbitrage condition but rather should be constructively
invoked to study its impacts on the models. In other words, these market
imperfections are considered as second-order effects.

EXISTENCE OF RATIONAL AGENTS

Mainstream finance and economic modeling add a second overarch-
ing organizing principle, namely that investors and economic agents are
rational. Contrary to an oft-quoted perception in the popular press and
in certain circles of the stock market as populated by irrational herds
(see chapter 4), a significant fraction of the traders most of the time do
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exhibit a rational behavior in which they try to optimize their strategies
based on the available information. One may refer to this as “bounded
rationality” since not only is the available information in general incom-
plete, but stock market traders also have limited abilities with respect
to analyzing the available information. In addition, investors are uncer-
tain about the characteristics and preferences of other investors in the
market. This means that the process of decision making is essentially a
“noisy process” and, as a consequence, a probabilistic approach in stock
market modeling is unavoidable since there are no certainties. Clearly, a
noise-free stock market with all information available occupied by fully
rational traders of infinite analysis abilities would have a very small
trading volume, if any.

The assumption of perfectly rational, maximizing behavior won out
until recently in the art of modeling, not because it often reflects reality,
but because it was useful. It enabled economists to build mathemati-
cal models of behavior and to give their discipline a rigorous, scientific
air. This process started in the mid-1800s, evolving by the end of the
century into the approach known today as neoclassical economics. And
while twentieth-century critics like the University of Chicago’s T. Veblen
and Harvard’s J. K. Galbraith argued that people are also motivated
by altruism, envy, panic, and other emotions, they failed to come up
with a way to fit these emotions into the models that economists had
grown accustomed to—and thus had little impact, until recently. As we
showed in chapter 4, the field is being enriched with revisitations and
extensions of these approaches based on novel research encompassing
the sciences of human behavior, psychology, and social interactions and
organization.

This long list of irrational or anomalous behavior shown by human
beings in certain specific systematic ways should not confuse us: the
relevant task for understanding stock markets is not so much to focus
on these irrationalities but rather to study how they aggregate in the
complex, long-lasting, repetitive, and subtle environment of the market.
This extension requires us to put aside the description of the individ-
ual in favor of the search for emerging collective behaviors. The mar-
ket may have many special features that protect it from aggregating the
irrationalities of individuals into prices. In other instances, the aggrega-
tion may stigmatize this irrationality in what we shall refer to as “spec-
ulative bubbles.”

Market rationality should thus be understood in the sense that asset
prices are set as if all investors are rational [354]. Clearly, markets can
be rational even if not all investors are actually rational, as discussed
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extensively in chapter 4. The “minority game” described in chapter 4
taught us in particular that the market becomes rational if there are suf-
ficiently many heterogeneous agents acting on limited information. This
is consistent with the view of M. Rubinstein from the University of Cal-
ifornia at Berkeley, who argued that the most important trait of investor
irrationality, to the extent that it affects prices, is particularly likely to
be manifest through overconfidence, which in turn is likely to make the
market “hyperrational” [354]. Indeed, overconfidence leads investors to
believe they can beat the market, causes them to spend too much time
on research, and causes many to trade too quickly on the basis of their
information without recovering in benefits what they pay in trading costs.
Thus, overconfidence leads to extensive analysis of the scarse available
information and its incorporation into stock prices, which is consistent
with the conclusions of the “minority games.”

Therefore, the machinery behind market rationality is that each
investor, using the market to serve his or her own self-interest, unwit-
tingly makes prices reflect that investor’s information and analysis. It
is as if the market were a huge, relatively low-cost continuous polling
mechanism that records the updated votes of millions of investors in
continuously changing current prices. In light of this mechanism, for
a single investor (in the absence of inside information) to believe that
prices are significantly in error is almost always folly [354]. Let us
quote Rubinstein:

Remember the chestnut about the professor and his student. On one of
their walks, the student spies a $100 bill lying in the open on the ground.
The professor assures the student that the bill cannot be there because
if it were, someone would already have picked it up. To this attempt
to illustrate the stupidity of believing in rational markets, my colleague
Jonathan Berk asks: How many times have you found such a hundred
dollar bill? He implies, of course, that such a discovery is so rare that the
professor is right in a deeper sense: It does not pay to go out looking for
money lying around.

“RATIONAL BUBBLES” AND GOLDSTONE MODES OF THE PRICE
“PARITY SYMMETRY” BREAKING

Blanchard [43] and Blanchard and Watson [45] originally intro-
duced the model of rational expectations (RE) bubbles to account
for the possibility, often discussed in the empirical literature and by
practitioners, that observed prices may deviate significantly and over
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extended time intervals from fundamental prices. While allowing for
deviations from fundamental prices, rational bubbles keep a fundamental
anchor point of economic modeling, namely that bubbles must obey
the condition of rational expectations and of no-arbitrage opportunities.
Indeed, for fluid assets, dynamic investment strategies rarely perform
better than simple buy-and-hold strategies [282]; in other words, the
market is not far from being efficient and few arbitrage opportuni-
ties exist as a result of the constant search for gains by sophisticated
investors. The conditions of rational expectations and of no-arbitrage are
useful approximations. The rationality of both expectations and behavior
does not imply that the price of an asset is equal to its fundamental
value. In other words, there can be rational deviations of the price from
this value, called “rational bubbles.” A rational bubble can arise when
the actual market price depends positively on its own expected rate of
change, as sometimes occurs in asset markets, which is the mechanism
underlying the models of [43] and [45].

Price Parity Symmetry.

Recall that pricing of an asset under rational expectations theory is
based on the two following hypotheses: the rationality of the agents and
the “no-free lunch” condition. In addition, the “firm-foundation” theory
asserts that a stock has an intrinsic value determined by careful analysis
of present conditions and future prospects. Developed by S. Eliot Guild
[183] and John B. Williams [457], it is based on the concept of discount-
ing future dividend incomes. In the words of Burton G. Malkiel [282],
discounting refers to the following concept:

Rather than seeing how much money you will have next year (say $1.05 if
you put $1 in a saving bank at 5% interest), you look at money expected
in the future and see how much less it is currently worth (thus next year’s
$1 is worth today only about 95 ¢, which would be invested at 5% to
produce $1 at that time).

The discounting process thus captures the usual concept that some-
thing tomorrow is less valuable than today: a given wealth tomorrow has
a little less value than the same wealth today, as we have to wait to use it.
In practice, the intrinsic value approach is a quite reasonable idea that is,
however, confronted with slippery estimations: the investor has to esti-
mate future dividends, their long-term growth rates as well as the time
horizon over which the growth rate will be maintained. Notwithstanding
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these problems, this approach has been promoted by Irving Fisher [134]
and Graham and Dodd [170] so that generations of Wall Street security
analysts have been using some kind of “firm-foundation” valuation to
pick their stocks.

Therefore, under the rational expectation condition, the best estimation
at time ¢ of the price p,, of an asset at time # + 1 viewed from time ¢
is given by the expectation of p, , given the knowledge of all available
information accumulated up to time ¢. The “no-free-lunch” condition
then imposes that the expected returns of all assets are equal to the
return r of the risk-free asset, such as a return on CD bank accounts.
From this condition, one obtains the “fundamental” price today as equal
to the sum of the price tomorrow discounted by a discount factor acting
from today to tomorrow and of the dividend served today. The dividend
is added to express the fact that the expected price tomorrow has to be
decreased by the dividend since the value before giving the dividend
incorporates it into the pricing. The standard “forward” or “fundamental”
value p/ at time ¢ is thus the sum over all future dividends discounted to
the present t. According to this rule, if interest rates are 4%, a promise
to pay (dividend) $4 per year forever is worth $100, but a promise to
pay $4 this year, $4.12 next year, and $4.24 the year after (the payout
increases each year at the same rate as GDP, say 3%) should be worth
$400—100 times the current payment.

It turns out that this fundamental price is not the full solution of this
valuation problem. It is easy to show that the most general solution is
the sum of the fundamental solution plus an arbitrary “bubble” compo-
nent X,. This bubble component has to obey the single no-free-lunch
condition; that is, its value today is equal to its expected value tomorrow
discounted by the discount factor. In the bubble component, there is no
dividend! It is important to note that the speculative bubbles appear as a
natural consequence of the fundamental “firm-foundation™ valuation for-
mula, that is, as a consequence of the no-free-lunch condition and of the
rationality of the agents. Thus, the concept of bubbles is not an addition
to the theory but is entirely embedded in it.

It is interesting to pause a bit to ponder this result and deepen
our understanding by developing an analogy with another deep result
from particle and condensed-matter physics. The novel insight [403] is
that the arbitrary bubble component X, of an asset price plays a role
analogous to the so-called “Goldstone mode” in nuclear, particle, and
condensed-matter physics [59, 62]. Goldstone modes are the zero-energy
infinite-wavelength mode fluctuations that attempt to restore broken
symmetry.
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For instance, consider a “Bloch” wall between two large magnetic
domains of opposite magnetization within a magnet, for instance,
selected by opposite magnetic fields at boundaries far away. The broken
symmetry is the fact that the two domains separated by the wall have
opposite magnetization. A full symmetry would be that both domains
have the same magnetization or both have magnetization with equal
probability.

It turns out that, at nonzero temperature, “capillary” waves propagat-
ing along the wall are excited by thermal fluctuations. The limit of very
long-wavelength capillary modes corresponds to arbitrary translations of
the wall, an embodiment of the concept of Goldstone modes, which
tend to restore the translational symmetry broken by the presence of the
“Bloch” wall.

What could be the symmetry-breaking acting in asset pricing? The
answer may be surprising. It is the so-called “parity symmetry” between
positive and negative prices [395],

p — —p parity symmetry, (7)

where both positive and negative prices quantify our liking or disliking
of the commodity. Indeed, it makes perfect sense to think of negative
prices. We are ready to pay a (positive) price for a commodity that we
need or like. However, we will not pay a positive price to get something
we dislike or which disturbs us, such as garbage, waste, a broken and
useless car, chemical and industrial hazards, and so on. Consider a chunk
of waste. We will be ready to buy it for a negative price; in other words,
we are ready to take the unwanted commodity if it comes with cash.
This exchange of waste for income is the basis for the industry of waste
management. Nuclear waste from some countries, such as Japan, are
shipped to La Hague reprocessing complex in France, which is ready to
store the unwanted wastes for income. The Japanese are thus paying a
price to get rid of their waste, that is, La Hague is paying a negative price
to get the nuclear waste commodity! As a matter of fact, this exchange
of wastes is at the basis of a huge business for the present and future
management of industrial and nuclear waste that counts in the hundreds
of billions of dollars. A less obvious example is the case of electricity
companies in California, for instance, which sell surplus electricity in
exceptional cases for negative prices; it is expensive for them to shut
down a power plant and to restart it again [452]. My German colleague,
Prof. D. Stauffer, humorously points out that the page charges some
authors pay to journals to get rid of their manuscripts are an example of
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Positive Prices Negative Prices
Desired good Cash Undesired good Cash
or service or payment or service or payment
| Consumer Consumer |

FiG. 5.1. Graphic showing that the sign of price is defined by the relative direction
of the flow of cash or payment compared to the flow of goods or services; a positive
price corresponds to the more commonly experienced situation where the cash or
payment flow is with a direction opposite to the flow of goods or services; a negative
price corresponds to the reverse situation where the cash or payment flow has the
same direction as the flow of goods or services. Reproduced from [395].

negative prices. Actually, this is not correct, but this example illustrates
the subtlety of the concept: authors pay to get published, not to get rid
of their paper but to buy fame; that is, cash leaves the authors but fame
comes to them (hopefully), hence the positivity of the price in this case.
In sum, we pay a positive price for something we like and a negative
price for something we would rather be spared of; that is, we pay a
positive price to get rid of it or we need a remuneration to accept this
unwanted commodity. This concept is illustrated in Figure 5.1.

In the economy, what makes a share of a company desirable? Answer:
Its earnings, which provide dividends, and its potential appreciation,
which gives rise to capital gains. As a consequence, in the absence of
dividends and of speculation, the price of share must be nil. The earnings
leading to dividends d thus act as a symmetry-breaking “field,” since a
positive d makes the share desirable and thus develops a positive price.
This is, as we have seen, at the basis of the “firm-foundation” funda-
mental pricing of assets. It is clear that a negative dividend, a premium
that must be paid regularly to own the share, leads to a negative price,
that is, to the desire to get rid of that stock if it does not provide other
benefits. For a share of a company that is providing neither utility nor
a waste, there is no intrinsic value for it if it does not give you more
buying power for something you desire. Hence, its price is p = 0 for a
vanishing dividend d = 0. In this case, we can allow for both positive
and negative price fluctuations, but there is a priori nothing that breaks
the symmetry (7).

We stress that the price symmetry (7) is distinct from the gain/loss
symmetry of stock holders, before the advent of limited liability com-
panies in the middle of the nineteenth century. With the present limited
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liability of stock holders, owning a stock is akin to holding an option:
gain is accrued from dividend and capital gains; on the downside, losses
are limited at the buying price of the stock. This asymmetry, which
is a relatively recent phenomenon and led to the full development of
capitalism, is also conceptually distinct from the breaking of the parity
symmetry (7) of prices induced by a positive dividend.

It is now clear that there are no restrictions on the nature of the bub-
ble X, added to the fundamental price pl, except for the no-free-lunch
condition. The bubble is thus playing the role of the Goldstone modes,
restoring the broken parity symmetry: the bubble price can wander up
or down and, in the limit where it becomes very large in absolute value,
dominate over the fundamental price, restoring the independence of the
price with respect to dividend. Moreover, as in condensed-matter physics,
where the Goldstone mode appears spontaneously since it has no energy
cost, the rational bubble itself can appear spontaneously with no divi-
dend. A similar point of view has been advocated in [27] to explain the
dynamics of money.

Speculation as Spontaneous Symmetry Breaking.

When the dividends are not constant and grow with time, the funda-
mental price is larger since it must incorporate the additional expected
value of the future cash flow. There is thus a competition between the
increasing growth of the dividends far in the expected future resulting
from the expected growth of the company and the decreasing impact of
dividends further in the future due to the effect of the discount factor (for
instance, inflation). The increasing growth of dividends tends to increase
the fundamental price. The decreasing impact of dividends further in the
future tends to decrease the fundamental price. In the example in which
the Interest rate is 4% and the growth rate of dividend is 3%, and if there
were no risks, stocks would be worth 100 times the current cash flow
to stockholders. But a stock is not riskless, and the future dividend flow
is only a hope, not a promise. Thus, investors require a “risk premium”
to compensate them for the risk. This amounts to reducing the dividend
growth rate to a so-called risk-adjusted growth rate r).

Now, when this risk-adjusted growth rate ), becomes equal to or larger
than the discount rate r, the fundamental valuation formula becomes
meaningless, as it predicts an infinite price: the effect of discounting
the future dividends is perfectly balanced by the dividend growth rate
and, with an infinite time horizon, the price is just the sum of all future
presently adjusted dividends. In the economic literature, this regime is
known as the growth stock paradox [44]. This valuation problem was
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posed in 1938 by Von Neumann [442], who demonstrated that, in an
economy with balanced growth, the growth rate is always identical to the
interest rate and thus equal to the discount rate. Zajdenweber [461] later
pointed out that the value of a share is, as a consequence, always infinite
since it is based on an infinite sum of nondecreasing future dividends
(this reasoning neglects the finiteness of human life and therefore the
finiteness of the utility of an asset for a given investor). The intuition
is that when 7/, becomes equal to (and this is all the more true when
it is larger than) r, the price of money is not enough to stabilize the
economy: it becomes favorable to borrow money to buy shares and earn
an effective rate of return, which is positive for all values of the dividend.
This is exactly what happened on the U.S. market in the rally preceeding
the October 1929 crash [152]. Note that a negative » — r} is similar to a
negative interest rate r in the absence of growth and risks: it leads to an
arbitrage opportunity since you can borrow $1 now, keep it under your
mattress, and give back $1 x (1 — |r|) at a later time, pocketing 100|r|
cents in the process.

The existence of the parity symmetry of the price and the breakdown
of the fundamental pricing formula when the risk-adjusted growth rate r),
of the dividend becomes equal to or larger than the discount rate r sug-
gests a novel interpretation of speculative regimes and of bubble forma-
tions: the price can become nonzero or develop an important component
decoupled from the dividend flow by a mathematical mechanism known
as “spontaneous symmetry breaking.”

Spontaneous symmetry breaking is one of the most important con-
cepts in modern science as it underpins our present understanding of
the universe, of its interactions, and of matter—nothing less! Its basic
principle can be illustrated by a very simple dynamical system whose sta-
tionary solutions are represented in Figure 5.2 as a function of a control
parameter u = —(r — r;). This dynamical system possesses a priori the
parity symmetry (7), since both the prices p and —p are solutions of the
same equation. A solution respecting this symmetry obeys the symmetry
condition p = —p whose unique solution p = 0 is called the symmetry-
conserving solution. There is a critical value w, such that for u < w_,
p is attracted to zero and the asymptotic solution p(t — +o0) is zero,
which, as we said, is the only solution respecting the parity symmetry.
However, a solution of the dynamical evolution may not always respect
the parity symmetry of its equation. This occurs for u > . for which the
dynamical system possesses two distinct solutions, each of them being
related to the other by the action of the parity transformation p — —p:
the set of solutions respects the parity symmetry as an ensemble but each
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F1G. 5.2. Bifurcation diagram, near the threshold u., of a “supercritical” bifurcation.
The “order parameter” that is, the price p bifurcates from the symmetrical state zero
to a nonzero value £p, () represented by the two branches, as the control parameter
crosses the critical value u,. The parity symmetry preserving value p = 0, shown
as the dashed line, becomes unstable for u > u.. Reproduced from [395].

solution separately does not respect this symmetry. This phenomenon is
called “spontaneous symmetry breaking.” More generally, the concept
of spontaneous symmetry breaking describes the situation in which a
solution has a lower symmetry than its equation. The so-called “super-
critical bifurcation” diagram near the threshold u = w_, representing the
transition from a symmetric solution p = 0 to a spontaneous symmetry-
breaking solution is shown in Figure 5.2. Spontaneous symmetry break-
ing refers to the fact that the dynamical system will choose only one
of the two branches, as its evolution is unique (you cannot be at two
places at the same time) and will thus have a lower symmetry as a
consequence.

The concept of spontaneous symmetry breaking takes its full mean-
ing in the presence of a small external perturbation or “field” H. In
the spontaneous symmetry-breaking regime w > w., p jumps from one
branch to the other when the perturbation H goes from positive to neg-
ative, as illustrated in Figure 5.3: any infinitesimal field is enough to
flip the price p abruptly from one of its two symmetry-broken solutions
to the other. It cannot be stressed sufficiently how important this con-
cept of spontaneous symmetry breaking is. For instance, it is invoked
for unifying fundamental interactions: weak, strong, and electromag-
netic interactions are now understood as the result of a more fundamen-
tal spontaneous symmetry-broken interaction [448]. In another sweep-
ing application, particles and matter in this universe seem to be the
spontaneous symmetry-broken phases of a fundamental vacuum state
[448], similar to the nonvanishing price emerging in the spontaneous
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e
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/

F1G. 5.3. “Order parameter” or price p as a function of the external field for differ-
ent values of the control parameter w. The two thin lines correspond to two different
values of u < u,. The thick line is the spontaneous symmetry broken phase occur-
ring for w > pu.. Reproduced from [395].

symmetry-breaking phase u > u,. out of the symmetry-conserved “vac-
uum” solution p = 0. Critical phase transitions are also understood as
spontaneous symmetry-breaking phenomena [164].

In the context of the asset valuation problem, we propose [395] that,
when the risk-adjusted growth rate r, of the dividend becomes equal
to or larger than the discount rate r, assets acquire a spontaneous val-
uation as a result of this spontaneous symmetry-breaking mechanism.
When r — r, becomes negative, money is not a desirable commodity.
You lose money by keeping it. Other commodities become valuable
in comparison with money, hence the spontaneous price valuation in
the absence of a dividend. We thus propose that, for r — ), < 0, the
price becomes spontaneously positive (or possibly negative depending
on initial conditions or external constraints), and this spontaneous valu-
ation is nothing but the appearance of a speculation regime or bubble:
investors do not look at or care for dividends; the increase of price is
self-fulfilling.

According to this theory, the regime r < r) is a self-sustained growth
regime where prices become unrelated to earnings and dividends: prices
can go up independently of the dividends due to the spontaneous sym-
metry breaking, where a company’s shares spontaneously acquire value
without any earnings. This situation is similar to the spontaneous mag-
netization of iron at sufficiently low temperature, which acquires a spon-
taneous magnetization under zero magnetic field. This regime could be
relevant to understanding periods of bubbles such as in the so-called
New Economy, where price increases result in high price-over-dividend
ratios with debatable economic rationalization.
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The self-sustained growth regime r < r), where the expected growth
rate of the dividends is larger than the discount rate, accounts for a
number of stylized facts observed during speculative bubbles:

e The sentiment is broadly shared that the “run” will last indefinitely.
e There is a large increase in the price-over-dividend ratio;

e So-called “growth companies” are present: each speculative move has
had its growth companies: in 1857, the railways; in 1929, the utilities
(electricity production); in the 1960s, the office equipment companies
(e.g., IBM) and the rubber companies (car makers); today, we have the
Internet, software companies, banks, and investment companies. These
companies have a fast growth rate (usually larger than 30% per year)
and investors thus expect a large growth rate, r,, for their earnings.

e Speculative phases are often stopped by successive increases of the
discount rate; this occurred in 1929 (increase from 3.25% up to 6%),
in 1969, and in 1990 in Japan (increase from 2.5% to 6%).

o The high sensitivity of valuation close to the critical point r — r;, = 0
and the spontaneous speculative valuation below it suggest that crashes
and rallies can also be interpreted as reassessments of expected risk-
adjusted returns and their growth rates.

This leads to the following avenue for future research: new tech-
nologies, such as Internet, wireless communication, and wind power,
should be compared to old technologies, such as cars, shipping, and
mining. We expect that stocks in the new technology class have high
prices and low earnings and thus high price-over-dividend and price-
over-earnings ratios, while stocks in the old technology class have lower
prices and higher earnings and then lower price-over-dividend and price-
over-earnings ratios. This is indeed what is observed. If one goes back
in time, present “old technology” was new technology and a similar pat-
tern of high price-over-dividend and price-over-earnings ratios should be
seen. This has indeed been documented, for instance during the 1929
and 1962 bubbles.

BAsIC INGREDIENTS OF THE TwO MODELS
We now describe two models, which provide two extreme views of the

relationship between returns and risks associated with crashes. These
models use the no-arbitrage condition to link stock market returns during
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bubbles and the risk associated with potential crashes. Bounded rational-
ity is used to obtain a simple specification of price dynamics. These two
models recognize as essential the coexistence of and interplay between
two distinct populations of traders: the “noise” traders on one hand and
the “rational” traders on the other hand.

In the first “risk-driven” model, by their imitative and cooperative
behavior, the exhuberant noise traders may make the market more and
more unstable at certain times, as they can sometimes change opinion
abruptly on a large scale. As the risk of a crash looms stronger, rational
traders are enticed to stay invested only because of the higher accelerat-
ing returns, which provide an adequate compensation for the increasing
risks. The fundamental point in this model is that a crash is not certain
and there is a finite chance that the bubble ends and lands smoothly, thus
making it rational for traders to stay invested in the market and to profit
from (risky) gains.

The second “price-driven” model, discussed in this chapter, is also
based on the interplay between two distinct and complementary groups
of traders. The first population of noise traders drives the price volatility
up in an accelerating but stochastic spiral by their collective behavior,
allowing the emergence of price bubbles. The rational investors then
recognize that such a bubble is unsustainable and identify the existence
of an associated risk for a crash or of a severe correction that may
drive the price back to its fundamental value. This behavior, embodied
by the condition of no-arbitrage, leads to the following consequence:
anomalous sky-rocketing prices imply an increasing crash hazard rate,
defined as the probability that a crash will occur the next day, conditioned
on the fact that it has not yet happened. This increasing risk of a crash
is the unavoidable dark side of the market gains. Again, crashes are
stochastic events quantified by this hazard rate, which diverges when
the market valuation blows up. In this model, the long-term stationary
behavior of the market is a succession of normal random-walk phases,
with interpersed bubble phases ending in crashes bringing the market
back closer to fundamental valuation, like a springy young dog running
along with his mistress and receiving bolts that bring him back each time
he reaches the end of the rope. The remarkable property of this model
is that a crash may never happen if prices remain reasonable. This is
because the crash hazard rate is a strongly nonlinear amplifying function
of the price level. The probability of a crash is therefore very low at
modest price deviations from the fundamental value but becomes larger
and larger as the price increases. Even if the market price blows up, it
is always possible that the price will reverse smoothly without a crash,
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a scenario that, however, becomes less and less probable the higher the
price is.

THE RISK-DRIVEN MODEL
SUMMARY OF THE MAIN PROPERTIES OF THE MODEL

The rational expectation model of bubbles and crashes discussed below
is an extension [221, 209, 212] of the Blanchard model [43] and of the
Blanchard and Watson model [45]. It finds justifications in microscopic
models of investor behaviors, developed to formalize herd behavior or
mutual mimetic contagion in speculative markets [273]. In such a class
of models, the emergence of bubbles is explained as a self-organizing
process of “infection” among traders, leading to equilibrium prices that
deviate from fundamental values. Assuming that the speculators’ readi-
ness to follow the crowd may depend on an economic variable, such as
actual returns, above-average returns are reflected in a generally more
optimistic attitude that fosters the disposition to overtake others’ bullish
beliefs, and vice versa. This economic influence makes bubbles tran-
sient phenomena and leads to repeated fluctuations around fundamental
values.

Here, we stress the salient features that will be useful for the analysis
of the market data sets presented in chapters 7-10. Our model has two
main components.

e Its key assumption is that a crash may be caused by local self-
reinforcing imitation between traders. This self-reinforcing imitation
process leads to the blossoming of a bubble. If the tendency for
traders to “imitate” their “friends” increases up to a certain point
called the “critical” point, many traders may place the same order
(sell) at the same time, thus causing a crash. The interplay between
the progressive strengthening of imitation and the ubiquity of noise
requires a stochastic description: a crash is not certain but can be
characterized by its hazard rate h(t), that is, the probability per unit
time that the crash will happen in the next instant provided it has not
happened yet.

o Since the crash is not a certain deterministic outcome of the bubble, it
remains rational for traders to remain invested provided they are com-
pensated by a higher rate of growth of the bubble for taking the risk
of a crash, because there is a finite probability of “landing smoothly,”
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that is, of attaining the end of the bubble without crash. In this model,
the ability to predict the critical date is perfectly consistent with the
behavior of the rational agents: they all know this date, the crash
may happen anyway, and they are unable to make any abnormal risk-
adjusted profits by using this information.

The model distinguishes between the end of the bubble and the time of
the crash: the rational expectation constraint has the specific implication
that the date of the crash must have some degree of randomness. The
theoretical death of the bubble is not the time of the crash, because the
crash could happen at any time before, even though this is not very
likely. The death of the bubble is the most probable time for the crash.

The model does not impose any constraint on the amplitude of the
crash. If we assume that it is proportional to the current price level, then
the natural variable is the logarithm of the price. If, instead, we assume
that the crash amplitude is a finite fraction of the gain observed during
the bubble, then the natural variable is the price itself [212]. The standard
economic proxy is the logarithm of the price and not the price itself,
since only relative variations should play a role. However, different price
dynamics give both possibilities.

In the construction of a model, it is convenient to retain only the
essential aspects of reality and simplify by forgetting all the gory details
that are immaterial for the purpose of the model and that would blur the
demonstration. We thus neglect or incorporate dividends in the price, we
neglect the risk-free interest rate such as the interest you get on a CD
bank account (which can easily be reincorporated by a simple modifi-
cation of the argument), and we assume that investors are neutral with
respect to risks (again, this can be easily relaxed with some compli-
cation of the model without changing the main conclusions) and that
all have the same information. Then, the no-arbitrage condition together
with rational expectations are simply equivalent to the statement that the
average of the price tomorrow based on all present knowledge and all
information revealed until the present is equal to the price today. In other
words, the average of the total price variation is zero. The same princi-
ple is used when it is sometimes claimed that the best forecast for the
weather tomorrow is the weather today. This principle is a message of
complete randomness or, equivalently, of complete absence of knowledge
of the future. This condition is illustrated geometrically in Figure 5.4 and
corresponds to imposing that the average over all scenarios, shown as the
dark circle, be at the same price level as the empty circle representing
the price at the present time.
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Price

Present Future

Time

F1G. 5.4. A price trajectory ending at the present, at the position of the open circle.
The six trajectories from present to future delineated by the vertical lines constitute
six possible scenarios. Averaging over all possible scenarios, given the present price,
gives a price shown as the dark circle.

THE CraSH HAZARD RATE DRIVES THE MARKET PRICE

For each period, for instance a day, the model assumes that two compo-
nents, and only two, compete to determine the price increment from one
day to the next: (1) a daily market return that may change and fluctuate
from day to day; (2) the possibility that a crash will occur.

In this framework, the no-arbitrage condition together with rational
expectations tell us that the price variation due to the market return
should compensate exactly the average loss due to the possibility of a
crash. The average loss is performed by considering all possible scenar-
ios, most of them having no crash and thus no loss. Only those scenarios
that lead to a crash yield a loss. We can group all scenarios that give a
crash and count them. Their proportion among all possible scenarios is
nothing but the hazard rate previously defined, that is, the probability that
a crash occurs knowing that it has not yet happened. Then, the average
loss is simply equal to the market drop due to a crash times the probabil-
ity that such a crash will occur on this day, since all other scenarios that
do not give a crash do not contribute to a loss. For instance, suppose that,
on a given day, a crash of 30% has a probability of 0.01 (a chance of one
in one hundred) to occur and a probability of 0.99 not to happen. Then,
the loss averaged over all possible scenerios is 30% x 0.01 = 0.3%.
The no-arbitrage condition together with rational expectations hold true,
under the condition that the market remunerates investors by a return
of 0.3%. In this presentation of the argument, we have assumed, to sim-
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plify the discussion, that all crashes have the same amplitude. The results
are essentially the same when one takes into account the variability of
crash sizes. We would then need to perform an additional average over
all possible crash amplitudes.

This line of reasoning provides us with the following important result:
the market return from today to tomorrow is proportional to the crash
hazard rate. As we announced, we have derived that the higher the risk
of a crash, the larger is the price return. In essence, investors must be
compensated by a higher return in order to be induced to hold an asset
that might crash. This is the only effect that we wish to capture in this
part of the model. This effect is fairly standard, and it was pointed out
earlier in a closely related model of bubbles and crashes under rational
expectations by Blanchard [43]. It may go against the naive preconcep-
tion that price is adversely affected by the probability of the crash, but
this result is the only one consistent with rational expectations.

Let us stress an interesting subtlety that this reasoning allows us to
unearth. The no-arbitrage condition together with rational expectations
imposes that the total average return at any time is exactly zero. The zero
average return embodies the unrealized risks of a looming crash. This
return is not what investors actually experience but would correspond to
the average gain that a pool of many investors would get by aggregating
their portfolios when living over many repetitions of history, some with
a crash and most without a crash. In contrast, knowing that the crash has
not yet occurred, the return is not zero and may indeed exhibit all features
of a speculative bubble with inflating prices. We cannot stress enough
that there is no contradiction between the two ways of quantifying market
returns. Some might question the validity of the averaging procedure
over all possible scenarios. The point is that, in the absence of advanced
knowledge of the future, its best predictor is the average of all possible
scenarios. This market price reflects the equilibrium between the greed
of buyers who hope the bubble will inflate and the fear of sellers that it
may crash. A bubble that goes up is just one that could have crashed but
did not.

The situation can perhaps be clarified further with the following ana-
log example. Suppose you are given the possibility to play a casino game
with a rotating wheel with 100 numbers, such that you lose $30 if the
number comes out as 1 and you gain $x otherwise. What is the min-
imum value of the gain $x that can make this a game fair and entice
you to play? The simplest idea is to request that you should obtain at
least a nonnegative gain, on average, over many repetitions of the game.
This average is $x x 99 — $30 x 1 divided by the total number 100 of
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outcomes of the casino wheel. We thus see that the minimum value of x
that makes the average gain positive is $30/99, which is close to $0.3. A
minimum gain of $0.3 for any of the numbers 2 to 100 is thus required
to make the gain at least fair from your point of view (and profitable on
average if $x is larger). Thus, as long as the number 1 does not come
up, each game remunerates you with a gain of $0.3, which thus gives
the impression of an anomalous bias in your favor. Indeed, since the
number 1 has only one chance in one hundred to come out, the typical
number of games one needs to play to encounter it once is 100. One
may thus be attracted to this game and reason that it is safe to play the
game for a while, say n < 100 times, and thus accumulate a profit equal
to n times $0.3. As in the stock market, the gambler needs to decide
when to stop (exit) and be happy with her gains. Otherwise, she will
eventually get the number 1 and suddenly lose the gain of 100 games.
This example illustrates how a return can be large, conditioned on the
fact that the crash has not occurred. This return actually compensates for
the risk that the number 1 may come up at any time.

Now, suppose that you knew in advance that the number 1 was not
going to come out in the next game. It is clear that you would play
the game even if the gain $x is smaller than $0.3 as long as it remains
positive. It is the absence of knowledge of the future that requires a remu-
neration for taking risks precisely associated with the lack of knowledge
of the future. If we knew the specific future exactly, risk would vanish
(which does not mean that bad news would disappear).

To be complete, we should add that most people would not play this
game if the gain $x for the numbers 2 to 100 were only $0.3 because they
are “risk averse”: this means that most people do not like to gain zero on
average while facing the possibility of losing at some times. Most people
need a positive bias above $0.3 to play such a game. This subject of risk
aversion and its consequences for economic modeling is an important
subject of its own, which refers to a large body of scholarly work
dating back at least from the founding book [443] of Von Neumann and
Morgenstern, which introduced the concept of a utility function to
address this problem specifically. Risk aversion is a central feature
of economic theory, and it is generally thought to be stable within
a reasonable range, associated with slow-moving secular trends like
changes in education, social structures, and technology. For our purpose
here, it suffices to say that the market return may be larger than the
minimum value imposed by the no-arbitrage condition together with the
rational expectations discussed above. The important message is thus
the existence of this minimum. Risk aversion is easily incorporated into
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our model, for instance by saying that the probability of a crash in
the next instant is perceived by traders as being some factor F times
bigger than it objectively is. This amounts to multiplying our hazard
rate by this same factor F. This makes no substantive difference to our
conclusion as long as F is bounded away from zero and infinity (a very
weak restriction indeed).

IMITATION AND HERDING DRIVE THE CRASH HAZARD RATE

The crash hazard rate quantifies the probability that a large group of
agents place sell orders simultaneously and create enough of an imbal-
ance in the order book for market makers to be unable to absorb the
other side without lowering prices substantially. Most of the time, market
agents disagree with one another and submit roughly as many buy orders
as sell orders (these are all the times when a crash does not happen).
The key question is, By what mechanism did they suddenly manage to
organize a coordinated sell-off?

As discussed in the last section of chapter 4, titled “Cooperative
Behavior Resulting from Imitation,” all the traders in the world are orga-
nized into a network (of family, friends, colleagues, etc.) and they influ-
ence each other locally through this network. For instance, an active
trader is constantly on the phone exchanging information and opinions
with a set of selected colleagues. In addition, there are indirect interac-
tions mediated, for instance, by the media and the Internet. Our working
hypothesis is that agents tend to imitate the opinions of their connections
according to the mechanism detailed in the section titled “It Is Optimal
to Imitate,” in chapter 4. The interaction between connections will tend
to create order, while personal idiosynchrasis will tend to create disorder.
Disorder represents the notions of heterogeneity or diversity as opposed
to uniformity.

The main story here is a fight between order and disorder. As far as
asset prices are concerned, a crash happens when order wins (a majority
has the same opinion: selling), and normal times are when disorder wins
(buyers and sellers disagree with each other and roughly balance each
other out). This mechanism does not require an overarching coordination,
since macro-level coordination can arise from micro-level imitation and
it relies on a realistic model of how agents form opinions by constant
interactions.

Many models of interaction and imitation between traders have been
developed. We have described some of them in chapter 4. To make a
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long story short, the upshot is that the fight between order and disorder
often leads to a regime where order may win. When this occurs, the
bubble ends. Models that contain the imitation mechanism undergo this
transition in a “critical” manner: the sensitivity of the market reaction
to news or external influences increases in an accelerated manner on the
approach to this transition. This was shown in chapter 4 in the set of
Figures 4.8-4.10 representing the configurations of buyers and sellers in
a simple space of investors arranged on a square Manhattan-like lattice.
When the imitation strength K gets close to a special critical value K,
(whose specific value is not important and depends on details of the
models), very large groups of investors share the same opinion and may
act in a coordinate manner. This leads to a remarkable and very specific
precursory “power law” signature, which we now explain.

Let us assume that the imitation strength K changes smoothly with
time, as will be shown later in Figure 5.7, as a result, for instance, of the
varying confidence level of investors, the economic outlook, and similar
factors. The simplest assumption, which does not change the nature of
the argument, is that K is proportional to time. Initially, K is small and
only small clusters of investors self-organize, as shown in Figure 4.8.
As K increases, the typical size of the clusters increases as shown in
Figure 4.9. These kinds of systems exhibiting cooperative behavior are
characterized by a broad distribution of cluster sizes s (the size of the
black islands, for instance) up to a maximum s*, which itself increases in
an accelerating fashion up to the critical value K, as shown in Figure 5.5.
As explained in chapter 4, right at K = K, the geography of clusters
of a given kind becomes self-similar with a continuous hierarchy of
sizes from the smallest (the individual investor) to the largest (the total
system). Within this phenomenology, the probability for a crash to occur
is constructed as follows.

First, a crash corresponds to a coordinated sell-off of a large number
of investors. In our simple model, this will happen as soon as a sin-
gle cluster of connected investors, which is sufficiently large to set the
market off-balance, decides to sell off. Recall indeed that “clusters™ are
defined by the condition that all investors in the same cluster move in
concert. When a very large cluster of investors sells, this creates a sud-
den unbalance, which triggers an abrupt drop of the price, and hence
a crash. To be concrete, we assume that a crash occurs when the size
(number of investors) s of the active cluster is larger than some mini-
mum value s,,. The specific value s,, is not important, only the fact that
s,, 1s much larger than 1, so that a crash can only occur as a result of
a cooperative action of many traders who destabilize the market. At this
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FIG. 5.5. Power law acceleration of the size s* (in arbitrary units) of the typical
largest cluster as a function of the imitation strength K. As K approaches K, s*
diverges. This divergence embodies the observation that infinitely large clusters form
at the critical point K. In practice, s* is bounded by the system size.

stage, we do not specify the amplitude of the crash, only its triggering
as an instability. In general, investors change opinion and send market
orders only rarely. Therefore, we should expect only one or few large
clusters to be simultaneously active and able to trigger a crash.

For a crash to occur, we thus need to find at least one cluster of size
larger than s,, and to verify that this cluster is indeed actively selling
off. Since these two events are independent, the total probability for a
crash to occur is thus the product of the probability of finding such a
cluster of size larger than the threshold s,, by the probability that such
a cluster begins to sell off collectively. The probability n, of finding a
cluster of size s is a well-known characteristic of critical phenomena
[164, 414]: it is a power law distribution truncated at a maximum s*;
this maximum increases without bound (except for the total system size)
on the approach to the critical value K, of the imitation strength, as we
see in Figure 5.5.

If the decision to sell off by an investor belonging to a given cluster
of size s was independent of the decisions of all the other investors in
the same cluster, then the probability per unit time that such a cluster of
size s would become active would be simply proportional to the number
s of investors in that cluster. However, by the very definition of a cluster,
investors belonging to a given cluster do interact with each other. There-
fore, the decision of an investor to sell off is probably quite strongly
coupled with those of the other investors in the same cluster. Hence, the
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F1G. 5.6. Left panel: Probability for a crash to occur. In this example, the probability
reaches its maximum equal to 0.7 at the critical point K = K with an infinite slope.
Right panel: Crash hazard rate. The crash hazard rate is proportional to the slope of
the probability shown in the left panel and goes to infinity at K = K. Equivalently,
the area under the curve of the hazard rate of the right panel up to a given K /K, is
proportional to the probability shown in the left panel for this same value K = K.

probability per unit time that a specific cluster of s investors becomes
active is a function of the number s of investors belonging to that cluster
and of all the interactions between these investors. Clearly, the maximum
number of interactions within a cluster is s x (s — 1)/2; that is, for large
s, it becomes proportional to the square of the number of investors in
that cluster. This occurs when each of the s investors speaks to each of
his or her s — 1 colleagues. The factor 1/2 accounts for the fact that if
investor Anne speaks to investor Paul, then in general Paul also speaks
to Anne, and their two-ways interactions must be counted only once. Of
course, one can imagine more complex situations in which Paul listens
to Anne but Anne does not reciprocate, but this does not change the
results. Notwithstanding these complications, one sees that the probabil-
ity h(r)At per unit time Ar that a specific cluster of s investors becomes
active must be a function growing with the cluster size s faster than s but
probably slower than the maximum number of interactions (proportional
to s%). A simple parameterization is to take h(z)At proportional to the
cluster size s elevated to some power « larger than 1 but smaller than 2.
This exponent « captures the collective organization within a cluster of
size s due to the multiple interactions between its investors. It is deeply
related to the concept of fractal dimensions, explained in chapter 6.
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The probability for a crash to occur, which is the same as the probabil-
ity of finding at least one active cluster of size larger than the minimum
destabilizing size s,,, is therefore the sum over all sizes s larger than s,, of
all the products of probabilities #, to find a cluster of a specific size s by
their probability per unit time to become active (itself proportional to s¢,
as we have argued). With mild technical conditions, it can then be shown
that the crash hazard rate exhibits a power law acceleration as shown in
Figure 5.6. Intuitively, this behavior stems from the interplay between
the existence of larger and larger clusters as the interaction parameter K
approached its critical value K. and from the nonlinear accelerating prob-
ability per unit time for a cluster to become active as its typical size s*
grows with the approach of K to K. In sum, the risk of a crash per unit
time, knowing that the crash has not yet occurred, increases dramatically
when the interaction between investors becomes strong enough that the
network of interactions between traders self-organizes into a hierarchy
containing a few large, spontaneously formed groups acting collectively.

If the hazard rate exhibits this behavior, the previous section con-
vinced us that the return must exhibit the same behavior in order for the
no-arbitrage condition together with rational expectations to hold true.
We find here our first prediction of a specific pattern of the approach to
a crash: returns increase faster and faster; that is, they accelerate with
time. Since prices are formed by summing returns, the typical trajectory
of a price as a function of time, which is expected on the approach to a
critical point, is parallel to the dependence of the probability of a crash
shown in the left panel of Figure 5.6.

We stress that K, is not the value of the imitation strength at which
the crash occurs, because the crash could happen for any value before
K., though this is not very likely. K, is the most probable value of the
imitation strength for which the crash occurs. To translate these results
as a function of time, it is natural to expect that the imitation strength K
is changing slowly with time as a result of several factors influencing the
tendency of investors to herd. A typical trajectory K(¢) of the imitation
strength as a function of time ¢ is shown in Figure 5.7. The critical time
t, is defined as the time at which the critical imitation strength K, is
reached for the first time starting from some initial value. 7, is not the
time of the crash, it is the end of the bubble. It is the most probable
time of the crash because the hazard rate is largest at that time. Due
to its probabilistic nature, the crash can occur at any other time, with
the likelihood changing with time following the crash hazard rate. In a
given time history, the evolution of K as a function of time follows a
trajectory like that shown in Figure 5.7. For each value of K, we read on
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FiG. 5.7. A typical evolution of the imitation strength K(¢) as a function of time ¢
showing its smooth and slow variation. As time goes on, K may approach and even
cross the critical value K, at a critical time #, at which very large clusters of investors
are created spontaneously and may trigger a crash. Around ¢, the dependence of
K(t) is approximately linear, as shown by the thick linear segment tangent to the
curve.

the right panel of Figure 5.6 the corresponding value of the crash hazard
rate. Since K may go up and down, so does the crash hazard rate.

As shown in the left panel of Figure 5.6, there is a residual finite
probability (0.3 in this example) of attaining the critical time 7, without
a crash. This residual probability is crucial for the coherence of the story,
because otherwise the whole model would unravel since rational agents
would anticipate the crash with certainty.

Intuitive explanation of the creation of a finite-time singularity at 7.
The faster-than-exponential growth of the return and of the crash haz-
ard rate correspond to nonconstant growth rates, which increase with the
return and with the hazard rate. The following reasoning allows us to
understand intuitively the origin of the appearance of an infinite slope or
infinite value in a finite time at ¢, called a finite-time singularity.
Suppose, for instance, that the growth rate of the hazard rate doubles
when the hazard rate doubles. For simplicity, we consider discrete-time
intervals as follows. Starting with a hazard rate of 1 per unit time,
we assume it grows at a constant rate of 1% per day until it doubles.
We estimate the doubling time as proportional to the inverse of the
growth rate, that is, approximately 1/1% = 1/0.01 = 100 days. There
is a multiplicative correction term equal to In2 = 0.69 such that the
doubling time is In2/1% = 69 days. But we drop this proportionality
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factor In2 = 0.69 for the sake of pedagogy and simplicity. Including
it just multiplies all time intervals below by 0.69 without changing the
conclusions.

When the hazard rate turns 2, we assume that the growth rate doubles
to 2% and stays fixed until the hazard rate doubles again to reach 4. This
new doubling time is only approximately 1/0.02 = 50 days at this 2%
growth rate. When the hazard rate reaches 4, its growth rate is doubled
to 4%. The doubling time of the hazard rate is therefore approximately
halved to 25 days, and the scenario continues with a doubling of the
growth rate every time the hazard rate doubles. Since the doubling time
is approximately halved at each step, we have the following sequence:
(time = 0, hazard rate = 1, growth rate = 1%), (time = 100, hazard
rate = 2, growth rate = 2%), (time = 150, hazard rate = 4, growth rate =
4%), (time = 175, hazard rate = 8, growth rate = 8%), and so on. We
observe that the time interval needed for the hazard rate to double is
shrinking very rapidly by a factor of 2 at each step. In the same way that

which was immortalized by the ancient Greeks as Zeno’s paradox, the
infinite sequence of doubling thus takes a finite time and the hazard
rate reaches infinity at a finite “critical time” approximately equal to
100 4+ 50 + 25 4 - - - = 200 (a rigorous mathematical treatment requires a
continuous-time formulation, which does not change the qualitative con-
tent of the example). A spontaneous singularity has been created by the
increasing growth rate! This process is quite general and applies as soon as
the growth rate possesses the property of being multiplied by some factor
larger than 1 when the hazard rate or any other observable is multiplied
by some constant larger than 1. We shall revisit this example in chapter 10
when we analyze the world demography, major financial indices, and the
World Gross Economic product over several centuries to look ahead and
attempt to predict what is coming next.

To sum up, we have constructed a model in which the stock market
price is driven by the risk of a crash, quantified by its hazard rate. In
turn, imitation and herding forces drive the crash hazard rate. When the
imitation strength becomes close to a critical value, the crash hazard rate
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diverges with a characteristic power law behavior. This leads to a specific
power law acceleration of the market price, providing our first predictive
precursory pattern anticipating a crash. The imitation between agents
leading to an accelerating crash hazard rate may result, for instance,
from a progressive shift in the belief of investors about market liquidity,
without invoking asymmetric information, and independently of the price
behavior and its deviation from its fundamental value [132].

THE PRICE-DRIVEN MODEL

The price-driven model inverts the logic of the previous risk-driven
model: here, again as a result of the action of rational investors, the price
is driving the crash hazard rate rather than the reverse. The price itself is
driven up by the imitation and herding behavior of the “noisy” investors.

As before, a stochastic description is required to capture the inter-
play between the progressive strengthening of imitation controlled by
the connections and interactions between traders and the ubiquity of
idiosyncratic behavior as well as the influence of many other factors that
are impossible to model in detail. As a consequence, the price dynam-
ics are stochastic and the occurrence of a crash is not certain but can
be characterized by its hazard rate h(r), defined as the probability per
unit time that the crash will happen in the next instant if it has not
happened yet.

IMITATION AND HERDING DRIVE THE MARKET PRICE

Hsieh has stressed that the evidence documented in chapter 2 of an
absence of correlation of price changes and a strong persistence of
volatility (i.e., the amplitude of the price variations), when taken together,
cannot be explained by any linear model [201, 202]. Recall that a linear
model is a description in which the consequence or output is propor-
tional to the cause. Nonlinearity generalizes tremendously the quite spe-
cial “linear” behavior by allowing the output to depend on the cause in a
more complicated way. Nonlinearity is an ingredient of chaos, a theory of
complex systems that have been studied intensely in the last few decades
as a possible origin of complexity. Chaos has been widely popularized
and has even been advocated by some as a useful description of stock
markets. This, however, remains too simplistic, as chaos theory relies
on the assumption that only a few major variables interact nonlinearly
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and create complicated trajectories. In reality, the stock market needs
many variables to obtain a reasonably accurate description. In technical
jargon, the stock market has many degrees of freedom, while chaos the-
ory requires only a few. The existence of many degrees of freedom is
precisely the ingredient used by the models of collective behavior that
exhibit critical points described in the previous section and in chapter 4.
Here, we retain only the more general observation that effects are not
proportional to causes, that is, that the world and the stock market are
nonlinear systems.

A well-known joke among scientists in this field is to compare “non-
linearity” with a “non-elephant”: all creatures, except the elephants, are
non-elephant; similary, all systems and phenomena are nonlinear, except
the very special subsystems that are linear. Notwithstanding the fact that
we are educated at school in a “linear” framework of thoughts, this
ill-prepares us for the intrinsic nonlinearity of the universe, be it phys-
ical, biological, psychological, or social. Nonlinearity is at the origin
of the most profound difficulties in disentangling the causes of a given
observation: since effects are not in general proportional to causes, two
causes do not add up their impacts. Indeed, the output resulting from
the presence of two causes acting simultaneously is not the sum of the
outputs obtained in the presence of each cause in the absence of the
other one.

It is customary among modelers of financial markets to represent the
price variation over an elementary time period as resulting from two con-
tributions: a certain instantaneous return and a random return. The first
constribution embodies the remuneration due to estimated risks as well
as the effect of imitation and herding. The second contribution embodies
the noise component of the price dynamics with an amplitude called the
volatility. The volatility can also present a systematic component con-
trolled by imitation as well as many other factors. If the first contribution
is absent and the volatility is constant, the second term alone creates the
random walk trajectories described in chapter 2. Reinserting the ubiqui-
tous property of nonlinear dependence of the volatility and of the certain
instantaneous return on past values of the volatility and the returns pro-
vides a rich universe of possible trajectories. Here, I am interested in
the many possible mechanisms leading to a nonlinear positive feedback
of prices on themselves. For instance, imperfect information and risk
shifting from investors to lending banks may lead investors to bid up
asset prices far above what they would be willing to pay if they were
fully exposed to all potential losses [3]. We shall return to an intuitive
description of other mechanisms in chapters 7 and 8.
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THE PrRICE RETURN DRIVES THE CRASH HAZARD RATE

Earlier in this chapter, we showed that the no-arbitrage condition together
with the rational expectations imposes that the price variations from one
day to the next should compensate exactly for the average loss due to
the possibility of a crash. We now view this balance in the reverse logic:
noisy investors look at the market price going up, they speak to each
other, develop herding, buy more and more of the stock, thus pushing
prices further up. As the price variation speeds up, the no-arbitrage con-
dition, together with rational expectations, then implies that there must
be an underlying risk, not yet revealed in the price dynamics, which jus-
tifies this apparent free ride and free lunch. The fundamental logic here
is that the no-arbitrage condition, together with rational expectations,
automatically implies a dramatic increase of a risk looming ahead each
time the price appreciates significantly, such as in a speculative frenzy or
in a bubble. This is the conclusion that rational traders will reach. This
phenomenon can be summarized by the following proverb applied to an
accelerating bullish market: “It’s too good to be true.”

In the goal of capturing the phenomenon of speculative bubbles, we
focus on the class of models with positive feedbacks, as discussed in
chapter 4. In the present context, this means that the instantaneous return
as well as the volatility become larger and larger when past prices and/or
past returns and/or past volatilities become large. As explained in the
technical insert entitled “Intuitive Explanation of the Creation of a Finite-
Time Singularity at ¢,” earlier in this chapter, such positive feedbacks
with increasing growth rate may lead to singularities in a finite time.
Here, this means that, unchecked, the price would blow up without
bounds. However, two effects compete to tamper with this divergence.
First, the stochastic component impacting the price variations makes
the price much more erratic, and the convergence to the critical time
becomes a random, uncertain event. This is represented in Figure 5.8,
illustrating the variability of the price trajectory preceding the singularity
of B(t).

Figure 5.8 shows a typical trajectory of the bubble component of the
price generated by the nonlinear positive feedback model [396], start-
ing from some initial value up to the time just before the price starts
to blow up. The simplest version of this model consists in a bubble
price B(t) being essentially a power of the inverse of a random walk
W(?) in the following sense. Starting from B(0) = W(0) = 0 at the
origin of time, when the random walk approaches some value W,, here
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FiG. 5.8. Top panel: Realization of a bubble price B(¢) as a function of time con-
structed from the “singular inverse random walk.” This corresponds to a specific
realization of the random numbers used in generating the random walks W (¢) rep-
resented in the second panel. The top panel is obtained by taking a power of the
inverse of a constant W,, here taken equal to 1 minus the random walk shown in
the second panel. In this case, when the random walk approaches 1, the bubble
diverges. Notice the similarity between the trajectories shown in the top (B(7)) and
second (W(t)) panels as long as the random walk W(z) does not approach the
value W, = 1 too much. It is free to wander, but when it approaches 1, the bub-
ble price B(t) shows much greater sensitivity and eventually diverges when W(t)
reaches 1. Before this happens, B(¢) can exhibit local peaks, that is, local bubbles,
which come back smoothly. This corresponds to realizations of when the random
walk approaches W, without touching it and then spontaneously recedes away from
it. The third (respectively, fourth) panel shows the time series of the increments
dB(t) = B(t) — B(t — 1) of the bubble (respectively, dW(t) = W(t) — W(t — 1)
of the random walk). Notice the intermittent bursts of strong volatility in the bub-
ble compared to the featureless constant level of fluctuations of the random walk
(reproduced from [396]).
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taken equal to 1, B(¢) increases and vice versa. In particular, when
W (t) approaches 1, B(t) blows up and reaches a singularity at the
time ¢, when the random walk crosses 1. This process generalizes in
the random domain the finite-time singularities described earlier in this
chapter, such that the monotonously increasing process culminating at
a critical time ¢, is replaced by the random walk that wanders up and
down before eventually reaching the critical level. This nonlinear posi-
tive feedback bubble process B(t) can thus be called a “singular inverse
random walk.” In absence of a crash, the process B(f) can exist only
up to a finite time: with probability 1 (i.e., with certainty), we know
from the study of random walks that W(z) will eventually reach any
level, in particular the value W, = 1 in our example, at which B(r)
diverges.

The second effect that tampers with the possible divergence of the
bubble price, by far the most important one in the regime of highly
overpriced markets, is the impact of the price on the crash hazard rate
discussed above: as the price blows up due to imitation, herding, spec-
ulation, and randomness, the crash hazard rate increases even faster, so
that a crash will occur and drive the price back closer to its fundamental
value. The crashes are triggered in a random way governed by the crash
hazard rate, which is an increasing function of the bubble price. In the
present formulation, the higher the bubble price, the higher is the proba-
bility of a crash. In this model, a crash is similar to a purge administered
to a patient.

Determination of the crash hazard rate. Concretely, a simulation using
a computer program proceeds as follows. First, we choose a discretization
of the time in steps on size 6¢. Then, knowing the value of the random
walk W (r — 6t) and the price B(z — 6¢) at the previous time ¢ — 8¢, we
construct W(¢) by adding an increment taken from the centered Gaussian
distribution with variance 6¢. From this, we construct the price B(t) by
taking the inverse of (W, — W(¢))®, where « is a positive exponent defined
in the model. We then read off from the no-arbitrage condition together
with the rational expectations what the probability h(t) é¢ is for a crash
to occur during the next time step, where h(¢) is the crash hazard rate.
We compare this probability with a random number ran uniformly drawn
in the interval [0, 1] and trigger a crash if ran < h(t) 6t. In this case,
the price B(t) is changed into B(¢)(1 — k), where k is drawn from a
prechosen distribution. For instance, the crash drop « can be fixed to,
say, 20%. It is straightforward to generalize to an arbitrary distribution of
jumps. After the crash, the dynamics proceeds incrementally as before,
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starting from this new value for time ¢ after a proper translation of W (r)
to ensure continuity of prices. If ran > h(t) dt, no crash occurs and the
dynamics can be iterated another time step.

This model thus proposes two scenarios for the end of a bubble: either
a spontaneous deflation or a crash. These two mechanisms are natural
features of the model and have not been artificially added. These two
scenarios are indeed observed in real markets, as will be described in
chapters 7-9.

This model has an interesting and far-reaching consequence in terms
of the repetition and organization of crashes in time. Indeed, we see
that each time the random walk approaches the chosen constant W,
the bubble price blows up and, according to the no-arbitrage condition
together with rational expectations, this implies that the market enters
“dangerous waters” with a crash looming ahead. The random walk model
provides a very specific prediction of the waiting times between suc-
cessive approaches to the critical value W_, that is, between successive
bubbles. The distribution of these waiting times is found to be a very
broad power law distribution [394], so broad that the average waiting
time is mathematically infinite. In practice, this leads to two interrelated
phenomena: clustering (bubbles tend to follow bubbles at short times)
and long-term memory (there are very long waiting times between bub-
bles once a bubble has deflated for a sufficiently long time). In particular,
amusing paradoxes follow, such as “the longer since the last bubble, the
longer the waiting time till the next” [402]. Anecdotally, this property
of random walks also explains the overwhelming despair of frustrated
drivers on densely packed highways that neighboring lanes always go
faster than their lane because they often do not notice catching up to a
car that was previously adjacent to them: assuming that we can model
the differential motion of lanes in a global traffic flow by a random walk,
this impression is a direct consequence of the divergence of the expected
return time of a random walk! To summarize, the “singular inverse ran-
dom walk” bubble model predicts very large intermittent fluctuations in
the recurrence time of speculative bubbles.

An additional layer of refinement can easily be added. Indeed, fol-
lowing [184], which introduced so-called Markov switching techniques
for the analysis of price returns, many scholarly works have documented
the empirical evidence of regime shifts in financial data sets [432, 175,
63, 431, 363, 24, 80, 110]. For instance, Schaller and Van Norden [363]
have proposed a Markov regime-switching model of speculative behavior
whose key feature is similar to ours, namely overvaluation of the price
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above the fundamental price increases the probability and expected size
of a stock market crash.

This evidence, taken together with the fact that bubbles are not
expected to permeate the dynamics of the price all the time, suggests
the following natural extension of the model. In the simplest and most
parsimonious extension, we can assume that only two regimes can
occur: bubble and normal. The bubble regime follows the previous
model definition and is punctuated by crashes occuring with the haz-
ard rate governed by the price level. The normal regime can be, for
instance, a standard random walk market model with constant small
drift and volatility. The regime switches are assumed to be completely
random. This dynamical and very simple model recovers essentially all
the stylized facts of empirical prices, that is, no correlation of returns,
long-range correlation of volatilities, a fat tail on return distributions,
apparent fractality and multifractality, and sharp peak—flat trough pattern
of price peaks. In addition, the model predicts and we confirm by
empirical data analysis that times of bubbles are associated with nonsta-
tionary increasing volatility correlations. This will be further elaborated
in our empirical chapters 7-10. The apparent long-range correlation of
volatility is proposed to result from random switching between normal
and bubble regimes. In addition, and perhaps most importantly, the
visual appearance of price trajectories is very reminiscent of real ones,
as shown in Figure 5.9. The remarkably simple formulation of the
price-driven “singular inverse random walk” bubble model is able to
reproduce convincingly the salient properties and appearance of real
price trajectories, with their randomness, bubbles, and crashes.

RISK-DRIVEN VERSUS PRICE-DRIVEN MODELS

Together, the risk-driven model and the price-driven model presented in
this chapter describe a system of two populations of traders, the “ratio-
nal” and the “noisy” traders. Occasional imitative and herding behaviors
of the noisy traders may cause global cooperation among traders, caus-
ing a crash. The rational traders provide a direct link between the crash
risks and the bubble price dynamics.

In the risk-driven model, the crash hazard rate determined from herd-
ing drives the bubble price. In the price-driven model, imitation and
herding induce positive feedbacks on the price, which itself creates an
increasing risk for a looming yet unrealized financial crash.
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Fi1G. 5.9. Top panel: The Hang Seng index (thick line) from July 1, 1991 to Febru-
ary 4, 1994 (denoted “bubble II” in Figure 7.8 and analyzed in Figure 7.10) as well
as ten realizations of the “singular inverse random walk” bubble model generated
by the nonlinear positive feedback model [396]. Each realization corresponds to an
arbitrary random walk whose drift and variance have been adjusted so as to best fit
the distribution of the Heng Seng index returns. Bottom panel: The Nasdaq com-
posite index bubble (thick line) from October 5, 1998 to March 27, 2000 analyzed
in Figure 7.22 as well as ten realizations of the “singular inverse random walk”
bubble model generated by the nonlinear positive feedback model [396]. Each real-
ization corresponds to an arbitrary random walk whose drift and variance have been
adjusted so as to best fit the distribution of the Nasdaq index returns. Reproduced
from [396].

We believe that both models capture a part of reality. Studying them
independently is the standard strategy of dividing-to-conquer the com-
plexity of the world. The price-driven model appears as perhaps the
most natural and straightforward, as it captures the intuition that sky-
rocketing prices are unsustainable and announce endogeneously a sig-
nificant correction or a crash. The risk-driven model captures a very
subtle self-organization of stock markets, related to the ubiquitous bal-
ance between risk and returns. Both models embody the notion that the
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market anticipates the crash in a subtle, self-organized, and cooperative
fashion, hence releasing precursory “fingerprints” observable in stock
market prices. In other words, this implies that market prices contain
information on impending crashes. The next chapter 6 explores the ori-
gin and nature of these precursory patterns and prepares the road for a
full-fledged analysis of real stock market crashes and th